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CHAPTER 1. Introduction

Today’s distributed systems running at Internet scale are heterogeneous, asynchronous, and

loosely coupled. A variety of computing devices can be connected into the system, ranging

from traditional workstations, mainframes to intelligent embedded devices, wireless PDAs and

mobile phones. The system must support applications that continuously monitor or react

to changes in the environment, inform other components asynchronously about transitions in

their internal state, request services from and provide services to other components.

Publish/subscribe(pub/sub for short) stands for a type of communication paradigm. It

allows clients to publish events(useful information), subscribe to a pattern of events and asyn-

chronously get notified of interested events once they become available. Unlike traditional

RPCs where communication is based on knowing the other party’s address, clients in pub/sub

can send and receive events without knowing each other’s identity. As such, it is considered

as a natural fit to the loosely coupled nature of modern distributed applications. Although

pub/sub is not a new invention [55, 5], its use in large-scale wide-area communication has

vastly increased its popularity in recent years.

Among all the variants of the pub/sub abstraction, content-based pub/sub is an especially

powerful type of pub/sub service, which allows users to precisely specify what information they

need. But the enhanced expressiveness in the selection mechanism slows down the speed of

event matching. Meanwhile in order to accommodate a large number of information producers

and consumers, the system’s architecture is changing from a centralized “event broker” to a

decentralized peer-to-peer network. The expanding network infrastructure introduces longer

delay in event delivery, incurs significant message processing overhead and is prone to all kinds

of faults. The goal of our research is to develop necessary data structures and algorithms to
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improve the scalability and reliability of a distributed content-based pub/sub system.

1.1 Large-scale distributed applications

The Internet has dramatically changed our life and hosted many exciting applications at a

worldwide scale: We see the rise of Web 2.0 as the next generation of World Wide Web. The

term refers to a set of new technologies - social networks, blogs, podcasts, wikis and RSS feeds

- all of which promote online collaboration and information sharing among users. Internet

auction sites and marketplaces like eBay and Amazon continue to expand their online trading

platform to create a virtual market where sellers meet buyers. Online games are conceived as a

lucrative business and face the big challenge of updating the unique view of the shared virtual

world for every player instantly. Traditional web-based content service already goes beyond

the desktop to provide personalized content delivery to mobile users.

These applications strive to establish connections between numerous and anonymous in-

formation producers and consumers. The big challenge here is to efficiently disseminate useful

information from its source to interested destinations. We first argue that publish/subscribe

model provides a natural solution to this problem. Before justifying our argument, it is nec-

essary to study some application scenarios to understand the requirements and to see why

existing approach is limited in terms of the efficiency or usability.

1.1.1 Content distribution and access

How can we stay tuned with daily news, tech trends and blog posts? We may google the

topics or bookmark the favorites. But at least we have to click on every link to visit the

corresponding web page and search for the contents actively. This approach lacks efficiency

due to a long list of urls to follow. In addition, web pages are not updated frequently. You

are likely to waste the effort by tracking them everyday. But if you don’t see it very often,

you take the risk of missing valuable posts. On the other hand, information providers want to

improve the visibility of their sites. A traditional approach is to use mailing list to keep track

of interested readers. But a mailing list is monolithic and usually expensive to maintain.
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1.1.2 Online games

Online games are predicted to be the future of the interactive entertainment industry.

Usually several instances of an online game are running on multiple connected machines, and

one of the players’ machines acts as the server. All the players share a single instance of the

virtual game world. But each individual only sees his surrounding area at any time instant.

Although many entities are moving and changing status concurrently, it is only necessary for

each player to get updated information about the entities that are visible to him based on his

current location.

1.2 Why publish/subscribe?

The above applications demand a new communication style, in which the flow of information

- from senders to receivers - is determined by the interests of the receiver rather than by an

explicit destination address assigned by a sender. This task can be simplified if we are equipped

with a mechanism which allows receivers to subscribe to the topics in advance and let senders

publish content without knowing the receivers’ identities.

For example, RSS [49] is a simple pub/sub solution to realize lightweight content distribu-

tion and access. RSS technology uses feeds, which are small XML files, to publish a summary

of web content. Feeds are posted on the web and can be subscribed by interested readers.

Programs known as feed readers can check a list of feeds on behalf of a user and display any

updated articles that they find.

Figure 1.1: Personalized news delivery through RSS
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Since RSS formats are specified in XML, the feeds can be automatically processed by

software. This makes it possible to syndicate content without incurring further work from the

original publisher. Companies no longer need a mailing list to keep track of interested readers.

On the other hand, a user can depend on a feed reader to automate the retrieval of latest

information. Some readers poll a feed server periodically to check updates. Other readers can

register a callback function with a feed server. Thereafter the server notifies the reader only

when it has new items.

Figure 1.2: Real-time updating of game scenes

Message communication in online games can also be modeled as a pub/sub service [3]. We

can draw a rectangle to encompass a player’s territory. Each player then expresses his inter-

est in the game environment by subscribing to the rectangle which specifies his arena. The

location of each moving entity can be described by a set of coordinates. The position infor-

mation is published and sent to all the players whose subscribed arena contains the advertised

coordinates. In this way, every player is guaranteed to receive only the information which is

necessary to update his view of the game world.

1.3 Research challenges for publish/subscribe

In this section, we briefly introduce the main features of the pub/sub paradigm, and then

highlight some research challenges in this area.

There are two interacting parties in a pub/sub system. One is the publisher who generates
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events. The other is the subscriber, who consumes events and specifies his interest in receiving

certain type of events by registering subscriptions. A subscription is a content filter used to

screen events. A pub/sub system is an event-based middleware, which corresponds to the

“cloud” in Figure 1.3. This middleware bridges publishers to subscribers by delivering events

from a publisher to interested subscribers based on their contents. It exposes “subscribe” and

“publish” interfaces to external parties. The form of the middleware can be as simple as a

single computer or as complicated as a distributed network of many computers.

Figure 1.3: The abstraction of a pub/sub service network

Because a centralized server does not scale with the increasing number of clients and suffers

from a single point of failure, we are interested in a distributed pub/sub system. A distributed

pub/sub network consists of many interconnected pub/sub routers. Every client joins the

system by choosing a nearby router as the access point. The client interacts with the gateway

router to submit his subscriptions, advertise new events and receive interested events.

Among all the variants of the pub/sub abstraction, content-based pub/sub is the most

powerful type of service, as it provides fine-grained event filtering capability. But distributed

content-based pub/sub is generally harder to implement and existing implementations face the

following challenges.

1.3.1 Event forwarding

Event forwarding is the primary purpose of a pub/sub system. In a distributed network,

event forwarding has both local and global aspects. Locally an event is matched against a set of

registered subscriptions based on its content, which we call a “content-match”. Content-match

is a hard combinatorial problem, as the matching now is based on an event’s content, rather
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than on a fixed destination address. Moreover the amount of registered subscriptions can be

huge. Kale et.al. [28] proved that the complexity of content-match is within a constant factor

of that of the Partial Match, which is a notoriously difficult pattern match problem. Therefore

it is accepted that content-match should be done as few times as possible.

Globally an event needs to traverse many routers before reaching interested subscribers.

This is because we no longer rely on a single router to find out all the matching subscriptions.

During the traversal of an event, similar content-match will be performed at multiple pub/sub

routers. This will further aggravate the situation. As users are sensitive to the end-to-end

delay reflected in event forwarding, our first challenge is to conquer the complexity inherent in

content-based event forwarding to shorten the delivery time.

1.3.2 Subscription propagation

In a distributed network, new events can arrive at different routers. It is necessary for a

pub/sub router to register its subscriptions at other sites so that interested events can be sent

back. Currently broadcasting is the common approach used to propagate subscriptions inside

a pub/sub network. But the cost of replicating all subscriptions at all pub/sub routers grows

super linearly with the total amount of subscriptions in the system. This also leads to a larger

routing table at each site, which in turn slows down the event matching.

To alleviate this, multiple groups [58, 39, 50, 30, 57, 61, 10] suggested exploiting the covering

relations among subscriptions to optimize subscription propagation. Covering represents the

containment relationship among subscriptions. We say one subscription s1 covers another

subscription s2, if and only if the set of events selected by s1 subsumes the set of events

selected by s2.

We can take advantage of covering relations to optimize subscription propagation as follows:

Let I represent an interface at a pub-sub router. The router received a subscription s2 and

decided to forward it through I. We can check if there exists some subscription s1, which

covers s2 and was forwarded through I. If s1 exists, then s2 is not forwarded since all events

matching s2 will be received due to the prior propagation of s1. Repeating this process at
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every router can result in a significant reduction in the number of forwarded subscriptions.

The advantages are twofold: (1) The number of subscribe and unsubscribe control messages is

reduced, and (2) The sizes of routing tables decrease, leading to faster notification forwarding.

But the introduction of covering yields new problems. Firstly, for every new subscription,

we need to examine whether it is covered or not. This is a hard problem, as its special case can

be formulated as multidimensional point dominance problem, for which no worst-case efficient

solution is known. Secondly in the presence of covering, if a general subscription s is deleted

from one router, some specific subscriptions may no longer be covered due to the removal of

s. Such subscriptions should be identified and forwarded to other routers. Otherwise clients

may not receive interested notifications in the future. This calls for an explicit tracking of

detected covering relation. Since subscriptions are frequently added/deleted from the system,

the exhibited dynamism poses a challenge to the efficient management of subscription covering.

1.3.3 Fault tolerance

The third challenge is related to the system’s reliability. Like other large-scale distributed

systems, faults do occur in a pub/sub network and can take various forms. An arbitrary fault

can destroy the network’s connectivity, corrupt the routing configuration or disable a pub/sub

router. From a user’s perspective, faults will let them lose interested events or receive unwanted

events. This will void the service contract promised by the pub/sub model. However due to the

huge diversity of possible faults, it is expensive (if not impossible) to identify and tackle each

fault separately. Moreover transient local faults may exert negative effect over a large portion

of the system. It often needs repairing at many pub/sub routers to fully recover from a fault.

Thus a good correction scheme should be scalable and minimize the processing overhead. Our

challenge is to devise a lightweight fault detection and recovery mechanism that can restore a

pub/sub system from various transient faults.
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1.4 Contributions of the thesis

This thesis presents the results of our study on developing necessary data structures and

algorithms to improve the scalability and reliability of a distributed content-based pub/sub

system. Parts of the thesis were previously published as [53, 52, 50, 51]. The contributions we

made respond to the challenges mentioned in Section 1.3 and can be summarized as follows.

1.4.1 Faster event forwarding through lookup reuse

As pointed out earlier, event forwarding in a pub/sub system is slow, because content-match

is complicated and often repeated at many pub/sub routers. We propose a novel technique

called “lookup reuse” to effectively replace an expensive content-match with a much cheaper

hash-table lookup. Lookup reuse reduces or sometimes completely eliminates the need of

content-match at many pub/sub routers. As a consequence, events can pass through a router

much faster. We compare several reuse strategies and show that Partial-Reuse yields the best

performance.

Many researches in pub/sub have been devoted to the study of faster event forwarding.

However most of them focus on building efficient indexes to accelerate event matching at

a single router. In contrast, our lookup reuse strategy addresses the inefficiency of event

forwarding arising at the network level. It complements existing studies and touches the

distributed nature of the event forwarding process.

1.4.2 Efficient subscription management for covering

The introduction of covering brings new problems, mainly fast detection and maintenance

of covering relations. Existing solution integrates the two functions into a single monolithic

data structure. We take a different approach by decoupling the detection of covering from its

maintenance. This modular design allows us to analyze the unique needs of each task and

work out the best solution for each piece. To be specific, we build a subscription index to

quickly answer covering query and construct a simple relation graph to dynamically maintain

discovered covering relations. We are also the first group to investigate the interaction between
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the two modules in order to combine them into a coherent general purpose two-layer framework.

Experimental results show that this framework runs much faster than existing solutions.

For the above two tasks, covering detection is much more expensive than the maintenance.

Its special case, the detection of covering for numeric subscriptions, can be formulated as a

multidimensional point dominance problem, for which no efficient worst-case solution exists.

However we realize that covering is just an optimization, which needs not to be strictly followed

all the time. This motivates us to propose a new concept called “approximate covering” to

obtain most benefits of exact covering at a fraction of its cost. A practical solution based on Z

space filling curve is presented. Our contributions are two-fold: Firstly, there is little work on

approximate covering detection. The only known result [39] is a probabilistic algorithm whose

complexity is in linear with the number of subscriptions, while we give a sublinear solution.

Secondly, relevant researches are limited to empirical studies. We present a formal analysis of

the algorithm performance.

1.4.3 Self-stabilization for fault tolerance

Self-stabilization is a notion first developed by Dijkstra [17] in 1974, which indicates a

system’s self-healing ability. The advantage of self-stabilization is that it addresses all faults

through an uniform mechanism, rather than enumerate all possible faults and propose separate

corrections for each of them. As such, we use it as a tool to fortify the pub/sub infrastructure,

which is prone to many kinds of faults.

We design a self-stabilizing algorithm to maintain the consistency among distributed rout-

ing tables in a pub/sub system. The algorithm achieves consistency by letting neighboring

routers periodically exchange their routing information and correct faults when necessary.

We further propose several optimizations to the algorithm. To be specific, we have the

routers exchange the sketches of their routing information, which are much smaller in size.

An analysis of the associated space/accuracy tradeoff is presented. For a special case which

involves a transient edge failure, we devise an online algorithm to optimize the fault recovery

such that the cost is within the twice of the optimal.
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1.5 Dissertation outline

The rest of the thesis is structured as follows.

In Chapter 2, we give an overview of the pub/sub system and show a formal modeling of

distributed content-based pub/sub. We also survey some popular system prototypes.

In Chapter 3, we discuss the lookup reuse strategy. The benefit of lookup reuse is demon-

strated through simulation study. The impact of subscription covering to various reuse strate-

gies is also investigated.

Chapter 4 is about the efficient management of subscription covering. First the notion of

covering and its benefit are explained. Next we describe our two-layer management framework

and compare it against existing approaches. Approximate covering and its practical solution

are presented at the end.

In Chapter 5, we describe the self-stabilizing algorithm used to maintain the consistency

among distributed routing tables in a pub/sub system. Two optimizations of the algorithm

are presented. Their effectiveness are validated through formal analysis as well as simulation

study.

Chapter 6 completes the dissertation with concluding remarks.
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CHAPTER 2. Background

The purpose of this chapter is to provide necessary background in understanding the con-

cepts that are related to a publish/subscribe system. We classify current implementations into

subject-based and content-based systems, with an emphasis on the latter. We present the

general architecture of a distributed content-based pub/sub system, in which we illustrate two

design issues: How expressive can subscriptions be? And how are events routed in a distributed

system? We conclude this chapter by reviewing some current systems.

2.1 Classification of publish/subscribe systems

Many existing systems implement different variants of the pub/sub abstraction. A major

distinction among them is the granularity of event selection. Two main models have resulted

from this: subject-based and content-based. We will use this distinction to classify current

systems in the remainder of this section.

2.1.1 Subject-based system

In a subject-based system, the event space is partitioned into disjoint zones called “sub-

jects”. Clients can subscribe to one or more subjects and they will receive all events which

belong to these subjects.

ROSS is an example of subject-based pub/sub system. Using ROSS, CNN.com divides

its content space into a set of news channels, including “world”, “U.S.”, “business”, “science”

etc. Readers who are interested in events happening outside the U.S. can subscribe to the

“world” feed. Thereafter they will get notified of latest events that are classified as belonging

to “world” by CNN.
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The implementation of subject-based pub/sub is simple and efficient, since we can take

advantage of group communication mechanisms such as IP multicast. Predefined subjects can

be considered as multicast groups. Event forwarding reduces to a lookup on the event’s subject

in the routing table to find the associated multicast address, followed by a regular multicast.

However subject-based system is limited in terms of its expressiveness. Users often have a

more precise specification of their interests than a general subject name. For example, readers

may want to know the events happening outside the U.S. within a certain period, for which

the “world” subject by itself is not selective. Users need to further filter the received events

based on the time they occurred. Moreover a single event often fits more than one subject.

For example, the discovery of a new protein by an European professor can be published to

both “world” and “science” feeds. Any user who subscribes to both feeds is going to read the

same message twice. The above constraints have limited the wide deployment of a subject-

based system. At present, many commercial pub/sub systems are subject-based, such as Java

JMS [27], TIBCO Rendezvous [59] and IBM WebSphere MQ [26].

2.1.2 Content-based system

A content-based interface allows a user to express his interest in events in a much more

flexible and precise way. The unprecedented expressiveness is based on a well-defined data

model formalized in [34]. The model uses an event schema to define the type of informa-

tion contained in each event. The event schema advertising a digital camera could be a pair

containing two attributes: zoom factor and resolution, both are floating point numbers. For

example, an event can be (zoom = 10.5×, resolution = 5.0mp). A subscription is a conjunction

of a set of predicates. Each predicate is a constraint on the value of an event attribute and

consists of an attribute name, an operator, and a value. In the digital camera example, a

valid subscription might be (zoom ≥ 6, resolution > 4). In this example, we say the event

matches the subscription because the value of each attribute in an event is accepted by the

corresponding predicate in the subscription.

If content-based systems are to scale to large networks, event forwarding must be performed
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in a distributed fashion. Existing systems, such as Siena [54], Gryphon [24], Rebeca [33],

Hermes [42] and Jedi [16], have demonstrated how to construct a distributed network of routers

to accomplish this task. The typical setup is illustrated in Figure 2.1. Each router manages a

set of local clients and is connected to a set of peer routers. A client expresses his interest in

receiving certain types of events by registering a set of subscriptions at a nearby router. Every

router forwards its registered subscriptions to its neighboring routers. These subscriptions

are further forwarded in the network to create a reverse path for matching events to flow

back to the subscriber. Whenever an event is published at a router, the router performs a

content-match and delivers it to all local clients who have issued matching subscriptions, and

also forwards it to neighboring routers from whom matching subscriptions were received. This

process is repeated at each subsequent downstream router until the event reaches all interested

subscribers.

Figure 2.1: Architecture of a distributed content-based pub/sub system

In comparison with subject-based system, content-based system delivers to the users only

the events they want. There is no additional filtering to be performed by the user like in

ROSS. However content-based pub/sub is generally harder to implement and existing systems

run much slower than subject-based pub/sub.

2.2 Examples of publish/subscribe systems

In this section, we describe some real implementations of content-based pub/sub system.

Note that the set of systems cited is not meant to be exhaustive. They are used as illustrations
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to exemplify the issues involved and their impact.

2.2.1 Gryphon

Gryphon is a content-based pub/sub system developed at IBM Watson research center [24].

The system is constructed as a redundant overlay network consisting of routers distributed

across multiple geographic locations. Clients can use the Java Message Service API to access

the service. Gryphon has been deployed over the Internet to support real-time applications

such as score distribution for Wimbledon 2001 and statistics reporting at the Sydney Olympics.

Some important research contributions of Gryphon include an event matching algorithm

with sub-linear complexity [65]; a scalable protocol to achieve exactly-once delivery of infor-

mation to a large number of subscribers in either publisher order or uniform total order [4];

a subscription propagation algorithm which supports in-order gapless delivery [66] and a con-

gestion control mechanism to protect a pub/sub system against network failure and link con-

gestion [43].

2.2.2 Siena

Siena is a research project developed at University of Colorado [54]. Siena aims to provide

efficient and scalable event routing over a wide-area network. They formalized the content-

based data model [10] used to define the structure of events and subscriptions. They also

introduce the notion of subscription covering to optimize the propagation of subscriptions

inside a pub/sub system.

Siena uses a counting algorithm [12] to realize event matching at a pub/sub router. The

counting algorithm assigns a counter to each subscription to keep track of the number of

predicates satisfied by an event. After iterating over all the attributes in an event, the algorithm

returns subscriptions whose counter value equals its number of predicates.

To forward an event, Siena router uses a two-layer scheme [11] which is a combination of a

traditional broadcast protocol and a content-based routing protocol. The broadcast protocol

treats each event as a broadcast message, and the content-based routing protocol prunes the
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branches in the broadcast tree to direct an event only to the nodes that have matching sub-

scriptions. This modular approach allows a pub/sub infrastructure to reuse existing broadcast

methods to realize one-to-many communication over the physical network, while the system

design can focus on building logical paths from possible publishers to interested subscribers.

2.2.3 Rebeca

The Rebeca project [33] at Darmstadt University of Technology investigates the usage of

pub/sub technology for large-scale e-commerce applications. The system was used as a testbed

to evaluate several content-based event routing algorithms [35]. The study indicated that the

usage of advertisement and clustering of similar user interests can benefit event routing.

They also explored building a pub/sub system on top of the Chord [56] peer-to-peer network

to take advantage of the extra features offered by a peer-to-peer substrate, such as bounded

routing depth, load balance, self-organization and congestion control. Similar to our work,

Rebeca uses self-stabilization [36] to automate fault recovery. The main idea is that routing

entries should be leased. Any entry which is not renewed before the expiration of its leasing

period will be purged from the system. A potential drawback of this approach is that the

amount of renewing messages issued by a client could impose a significant processing overhead

to the system.

2.2.4 Hermes

Hermes is an event-based middleware developed at University of Cambridge [42]. Hermes

distinguishes itself from simple pub/sub system by augmenting additional functions commonly

found in traditional middleware, such as programming language integration, access control and

composite pattern detection.

Hermes introduces a type-based data model to define events and subscriptions. Each event

is an instance of an abstract event type which defines its content schema. Types can be

inherited to create more sophisticated subtypes. This is analogous to the model of object-

oriented programming. A subscription must choose an event type, and then define constraints
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to further filter events of the specified type.

The system selects a rendezvous node for each type. Paths are created to route events

from publishers to the rendezvous node. From there, a dissemination tree is built to include

each subscriber who is interested in this type as leaf nodes. Events are first broadcasted inside

the diffusion tree, and content-based filtering is performed directly by subscribers. To help

publisher/subscribe create a path leading to the rendezvous node, Hermes uses a distributed

hash table based on the Pastry [13] substrate to set up the necessary state.
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CHAPTER 3. Faster event forwarding through lookup reuse

When compared with a subject-based system, a content-based publish-subscribe system

enables a client to express his interest in the events more precisely. This flexibility simplifies

the design of distributed applications and is greatly desired. For instance, IBM has designed

a real time scoreboard, powered by a content-based pub-sub middleware called Gryphon [24],

for the Australian Open.

However, the flexibility provided by a content-based system currently comes at a significant

cost. Event forwarding is an expensive task, since it is now based on the content of an event,

rather than on a fixed destination address (as in IP routing), or a fixed subject name, as in

subject-based pub-sub. When an event arrives at a router, its content must be matched with

the set of all registered subscriptions to find interested subscriptions, an operation that we call

a content-match. The set of subscriptions maybe large (tens of thousands), and there is no

simple way known to index these subscriptions to guarantee fast matching.

A large body of research (see Section 3.2) has been devoted to indexing subscriptions to

perform content-match efficiently. However, it can be shown [50] that high-dimensional range-

searching (for which no worst-case computationally efficient solution exists) is a special case

of the content-match problem, implying that content-match also does not have a worst-case

efficient solution. Thus, it is accepted that content-match is an expensive task, best done as

few times as possible.

Furthermore many existing publish-subscribe systems perform content-based routing in a

distributed manner, such as Siena [54], Gryphon [24], Rebeca [33], Hermes [42], Jedi [16] and

XNet [45]. Whenever an event is published at a router, the router forwards the event to

its neighbors from whom matching subscriptions were received. This process is repeated at
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each subsequent router, lying on the path established by a prior propagation of the matching

subscription, to reach interested subscribers. Consequently the same event-subscription match

gets repeated at many routers, which further exacerbates the efficiency of event forwarding.

In this chapter, we introduce lookup reuse, a novel approach to improve the efficiency of

event forwarding. Lookup reuse enables faster event forwarding through reusing matching

results computed by upstream routers in making forwarding decisions at downstream routers.

In many cases, this lets downstream routers replace an expensive content-match operation

with a much cheaper hash-table lookup. We study the integration of lookup reuse into existing

content-based event forwarding algorithms. In particular, we propose two reuse strategies:

Always-Reuse and Partial-Reuse. As a comparison, existing event forwarding algorithms are

classified as Never-Reuse. Our simulations show that when combined with popular content-

based event matching algorithms, Partial-Reuse is the best strategy to use.

Although lookup reuse is considered as a lightweight modification to existing event forward-

ing algorithms, it might create conflicts with other optimizations to a pub/sub system. For

example, subscription covering is considered as an optimization to realize efficient propagation

of subscriptions in a pub/sub system. Yet its presence will invalidate the Always-Reuse strat-

egy and affects the performance of the Partial-Reuse strategy. We will analyze and measure

the impact of subscription covering to lookup reuse strategies at the end of this chapter.

3.1 Introduction

In current pub-sub systems, event forwarding is performed independently from router to

router. When an event is forwarded from one router to the next hop after a content-match, the

next hop router starts from scratch and performs another content-match on the event using its

own routing table. Our faster event forwarding strategy is based on the following observation.

In many cases, the efforts spent by the routers in performing a content-match are repetitive.

Information needed by downstream routers to forward an event has been partially or wholly

computed by the upstream routers during their content-match procedure.

The above redundancy results from the way in which subscriptions are propagated in the
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system. A subscription that originates at a router will be forwarded to neighboring routers

so that matching events can flow back. Therefore, routing tables at neighboring routers share

many common subscriptions, and an event-subscription match which occurs in one router will

also occur in a neighboring router with high likelihood.

We propose a novel technique called lookup reuse to reduce this redundancy and improve

forwarding efficiency. The general approach is as follows. Once a router performs a content-

match and forwards an event to a next hop router, it passes along some metadata about the

content-match. Informally, this metadata tells the reason why the event is being forwarded in

this direction. This metadata can be used effectively by the next hop router to speed up its

own event forwarding procedure.

A simple way to implement lookup reuse, called Always-Reuse, is as follows. The metadata

is a list of all the subscriptions that match the event at the upstream router. The upstream

router passes on this list while forwarding an event. Instead of sending the actual subscriptions

themselves, which can be quite bulky, the upstream router can hash each subscription into a

unique key and then send the key instead. At the downstream router, a content-match can

be replaced by (many) inexpensive hash-table lookups on the set of keys received from the

upstream router. Since a content-match is much more expensive than a hash-table lookup,

this may speed up event processing at the downstream router.

To get an idea of the potential gain from replacing a content-match with a hash-table

lookup, we conducted experiments to compare the cost of the following operations: (1)key

lookup: each subscription is assigned a unique key and the set of all keys K is indexed using

a hash table. Given a query key k, does k ∈ K? With a good hash table implementation,

this cost is independent of the table size. (2)content-match: given an event e and a set of

subscriptions S, does there exist a subscription s ∈ S such that e matches s? This cost

depends on the size of S, and also on the content-match algorithm being used.

We study the cost of two representative content-match algorithms: the K-d tree and the

Counting algorithm (their descriptions are available in Section 3.4). Table 3.1 shows the

experimental results. Our experiments show that the cost of a content-match is about 2-3
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orders of magnitude greater than the cost of a key lookup for subscription sets of the same

size.

Input Counting K-d tree Key Lookup
1 720 144 0.73
2 391 77 0.73
3 177 42 0.73

Table 3.1: The average time taken for a content-match using two different algorithms. All
times are in microseconds. The data is for 10,000 subscriptions. For inputs 1,2 and 3, the

average fraction of subscriptions matching an event was 1%, 5% and 15% respectively.

A simple approach like Always-Reuse may not work well in many circumstances. For

example, consider a case when a given event matches all subscriptions at a router. Finding

all matching subscriptions and forwarding their keys along with the event may not be very

efficient for the following reasons. First, finding all matching subscriptions imposes a heavy

burden on a single router. It is also an “overkill”, since the presence of a single matching

subscription is enough to forward an event along. Second, the number of keys forwarded is

huge. This may induce a significant message overhead and slow down the packet transmission

over the network link. Third, the overhead of looking up all these keys at the downstream

router could nullify any advantage gained by the elimination of a content-match. A better

strategy would be a hybrid approach that switches dynamically between reusing lookups and

performing a content-match, depending on the matching results passed by preceding routers.

The hybrid approach is better able to balance the overhead of lookup reuse with the cost of

content-match. The hybrid strategy we propose in this work is called Partial-Reuse.

In addition to the above factors, the validity of Always-Reuse is based on the assumption

that the event source is able to find out all the matching subscriptions registered inside the net-

work for a published event. This condition can be satisfied only if a subscription is replicated

at every router. Recently researchers proposed to exploit the covering relationship among sub-

scriptions to realize efficient subscription propagation. Under this advanced scheme, not every

subscription is broadcasted over the network. Therefore Always-Reuse will become invalid.
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On the other hand, we are going to show that Partial-Reuse remains correct and explore the

impact of subscription covering to the performance of Partial-Reuse.

In summary, the contributions of this paper are as follows:

(1) We introduce lookup reuse as a lightweight optimization to the most critical task of event

forwarding in distributed content-based pub-sub systems. It replaces a large fraction of poten-

tially expensive content-match operations with much cheaper hash-table lookups, by strength-

ening collaboration among pub-sub routers. Lookup reuse is simple, and can be profitably

used in conjunction with any content-matching scheme, as long as the cost of a content-match

is significantly greater than a hash-table lookup.

(2) We explore the design space of various lookup reuse strategies. The simple Always-Reuse

just relies on key lookups (after an initial content-match), while a hybrid Partial-Reuse dy-

namically switches between lookup reuse and content-match. In addition, we also include a

strategy called Never-Reuse, which is an alias of the existing content-based event forwarding

algorithm that does not reuse any key lookups.

(3) We conducted simulations under different scenarios to measure the performance of pro-

posed lookup reuse strategies by integrating key lookup with two representative content-match

algorithms: the Counting algorithm and the K-d tree algorithm. Our simulations showed

that Partial-Reuse outperforms Always-Reuse and Never-Reuse, suggesting Partial-Reuse is

the best strategy to reuse key lookups.

(4) We investigated the performance of Partial-Reuse in the presence of subscription covering.

Though the introduction of covering increased the overhead of Partial-Reuse, the results showed

that it is still superior to Never-Reuse on most inputs.

3.2 Related work on event forwarding

Content-match lies at the heart of event forwarding in a distributed pub-sub system. Re-

cently Kale et al. [28] formally proved the hardness of content-match by showing its equivalence

to the notoriously difficult Partial Match problem. For the problem of content-match, various

forms of decision trees and subscription indexes are proposed. These efforts can be largely clas-
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sified into two broad categories: the counting-based approach [12, 19, 40] and the tree-based

approach [28, 7, 1].

Kulik [29] proposed a fast event forwarding algorithm, called match-structure event for-

warding. In his approach, every event or subscription is prefixed with a match-structure

header, which helps to speed up event-subscription matching at downstream routers. In com-

parison with lookup reuse, Kulik’s scheme differs in the way how the header is generated and

interpreted, and is somewhat similar to our Always-Reuse strategy.

Content-based publish-subscribe forwards an event based on its content. Existing group

communication protocol like IP multicast, though very efficient, is not readily applicable to

this new communication pattern. Cao et.al. proposed a new design called MEDYM(Match-

Early with DYnamic Multicast) in [9]. MEDYM decouples the event forwarding into two

functionalities: slow content-based event matching at network edge, and fast address-based

event multicasting inside the network.

The above two approaches share similarity with our Always-Reuse strategy. For a single

event, expensive content-match is executed at the entry point. Once an event entered the net-

work, content-match is eliminated and replaced by other faster forwarding method. Meanwhile

they also face the problems intrinsic to Always-Reuse as we exposed in Section 3.1.

It is suggested that partitions can be used to expedite event forwarding by confining the

propagation of information to smaller scopes [62, 8]. There are two dual approaches to achieve

this: event partitioning and subscription partitioning. Partitions enhance the relevance of

subscriptions to events by relocating them to the same subnet. As a result, events traverse

fewer hops and the size of routing tables is also smaller, since each router only needs to maintain

a subset of subscriptions, pertaining to events that may be routed on the networks in which it

participates.

The efficiency of event forwarding also depends on the subscription management. Many

systems [50, 39, 30, 57, 61] exploit “covering” relationships among subscriptions to reduce the

number of forwarded subscriptions and keep the size of routing tables small. The introduction

of subscription covering influences the implementation of lookup reuse. Such an impact is
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investigated in Section 3.6.

3.3 Lookup reuse strategies

In this section, we describe various event forwarding strategies, starting from the current

forwarding algorithm, which does not reuse any lookups, and moving on to the Always-Reuse

strategy, and then the Partial-Reuse strategy. Lookup Reuse algorithms tie in with the archi-

tecture of a distributed publish-subscribe system. Before describing the algorithms, we first

define our system model as follows.

Interconnection topology In a pub-sub system, we want to preserve the following

invariant: a router receives no more than one copy of a given event or subscription. Thus,

each event or subscription must be propagated over a tree. To ease our algorithm description,

we assume a simple network topology, where all pub-sub routers are organized into a single

spanning tree. Each router is connected to adjacent routers on the tree through network

interfaces. This is not a robust infrastructure from the perspective of fault-tolerance and

network congestion. In many cases a more redundant topology with cycles is used to connect

the pub-sub routers.

But such a simplification will not alter the design of Lookup Reuse algorithms. In case the

topology is not a tree, different sources are going to use different trees to propagate their original

subscriptions and events. The only change arising is the set of interfaces a downstream router

has to examine upon receiving an incoming event. We can formulate this set as Forwards(e) =

Neighbors−NST (e). Neighbors is the complete set of incident network links. NST (Not on

any Spanning Tree) comprises all the links which are not on the computed spanning tree rooted

at the original publisher of e. With acyclic topology, NST only includes the link from which

e was received. For a redundant topology, NST may include more incident links. So with a

redefinition of Forwards(e), one can immediately apply the same Lookup Reuse algorithm to

a redundant network topology.
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Subscription propagation In order to retrieve useful events published at a remote site,

we need to register local subscriptions at other routers as well. Subscription propagation is

thus an indispensable procedure of any distributed publish-subscribe system. In this section,

we consider a simple propagation scheme where every subscription is broadcasted over the

entire network. Researchers also propose to take advantage of the covering relationship among

subscriptions to realize efficient subscription propagation. We will investigate the impact of

covering to lookup reuse strategies in Section 3.6.

A router assigns incoming subscriptions to the interfaces from which they are received.

It often indexes subscriptions coming through the same interface to expedite content-based

event matching. However the exact form of a subscription index is not important to our study.

Lookup reuse should generate a profit as long as a content-match based on a subscription index

runs significantly slower than a hash-table lookup.

3.3.1 Never-Reuse

Now we review the current event forwarding algorithm. When an event arrives at a router

from an interface, the router needs to find out all the local subscribers who are interested in

this event. Besides for every other incident interface, the router checks to see if there is a

subscription received from that interface which matches the event. If a matching subscription

exists, then the event is forwarded, otherwise it is not forwarded. The same process is repeated

at all routers on the path(s) from the event source to the recipients of the event.

The pseudo code of Never-Reuse is presented in Algorithm 3.1. We refer “event source”

to the router at which the event is first published. The routing step is very similar at any

other router. The only difference is that a downstream router should exclude the interface

from which the event arrived when matching the event. This is necessary to break the loops

in event delivery. Since the current approach does not involve any lookup reuse, we call it the

Never-Reuse strategy.
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Algorithm 3.1 Never-Reuse (event e) /* event source */

1: for each interface I do
2: if I is the local interface then
3: use content-match to find all matching subscriptions
4: deliver e to interested local subscribers
5: else
6: use content-match to find one matching subscription that arrived through I
7: if a matching subscription exists then
8: forward e through I

3.3.2 Always-Reuse

To implement lookup reuse, for each subscription entering the network, a hash function

is applied on it to obtain an integer value. This integer is called a subscription’s key. If

two subscribers submit the same subscription, we can break the symmetry by prefixing each

subscription with the subscriber’s unique id before hashing it. We assume that the hash

function will generate different keys for different subscriptions, and this can be easily achieved

(with overwhelming probability) using any standard hash function, such as the simple modulo

function, as long as the key space is large enough (32 bits will do). Thus, we assume that there

is a one-one mapping between subscriptions and keys.

We use a structure called the KeyTable at every router. KeyTable is a hash table mapping

a subscription’s key to the interface from which that subscription arrived. Given the key of a

subscription, KeyTable returns the associated interface by using a single hash table lookup.

In Always-Reuse, the event source is responsible for finding all the matching subscriptions

for an event. The strategy eliminates content-match at any downstream outer. Alternatively

event forwarding is achieved by performing hash table lookups on the set of matching subscrip-

tion keys that are piggybacked over the event. The pseudo code of Always-Reuse is presented

in Algorithm 3.2 and 3.3.

Always-Reuse can be useful when an event matches only a few subscriptions. Under this

circumstance, the load of finding all matching subscriptions at the event source is moderate.

Furthermore the event forwarding inside the network is realized using pure key lookups. The

benefit is more pronounced if an event traverses many pub-sub routers. However it performs
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Algorithm 3.2 Always-Reuse (event e) /* event source */

1: for each interface I do
2: if I is the local interface then
3: use content-match to find all matching subscriptions.
4: deliver e to interested local subscribers
5: else
6: use content-match to find all matching subscriptions

and store their keys in K∞.
7: if K∞ 6= φ then
8: forward < e,K∞ > through I

Algorithm 3.3 Always-Reuse (event e, set<key> K) /* downstream routers */

1: let KI represent the set of subscription keys associated with interface I

2: for each interface I except the one from which e is received do
3: if (K ∩KI) 6= φ then
4: if I is the local interface then
5: deliver e to interested local subscribers by looking up K ∩KI .
6: else
7: forward < e,K ∩KI > through I

poorly under circumstances described in Section 3.1.

3.3.3 Partial-Reuse

In comparison with Always-Reuse, Partial-Reuse makes a few changes at both the event

source and at the other routers. Its pseudo code is presented in Algorithm 3.4 and 3.5.

At the event source, it is no longer necessary to find all matching subscriptions before

forwarding an event. Alternatively we apply a threshold of n, which specifies an upper bound

on the number of matching subscriptions to search. Suppose an event matches m subscriptions

on interface I. If m ≤ n, the content-match returns m keys. If m > n, the content-match just

returns n keys. Therefore the number of keys is bounded by n under Partial-Reuse.

We say the key list is complete if it contains the keys of all matching subscriptions. At a

downstream router, if the received key list is complete, Partial-Reuse forwards an event only

based on key lookups. Otherwise it first uses key lookups to eliminate content-match on as

many interfaces as possible. Content-match is then performed only on interfaces which are not

covered by any key.
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Partial-Reuse achieves good load balance, as we no longer rely on the event source to find all

the matching subscriptions. By imposing a threshold on the number of matching subscriptions

to search, it is able to control the overhead of content-match as well as key lookups at every

router.

Algorithm 3.4 Partial-Reuse (event e) /* event source */

1: for each interface I do
2: if I is the local interface then
3: use content-match to find all matching subscriptions.
4: deliver e to interested local subscribers
5: else
6: use content-match to find at most n matching subscriptions

and store their keys in K≤n.
7: if K≤n 6= φ then
8: forward < e,K≤n > through I

Algorithm 3.5 Partial-Reuse (event e, set<key> K) /* downstream routers */

1: let KI represent the set of subscription keys associated with interface I

2: for each interface I except the one from which e is received do
3: if K is complete then
4: if (K ∩KI) 6= φ then
5: if I is the local interface then
6: deliver e to interested local subscribers by looking up K ∩KI

7: else
8: forward < e, K ∩KI > through I
9: else

10: if I is the local interface then
11: use content-match to find all matching subscriptions
12: deliver e to interested local subscribers
13: else
14: if (K ∩KI) 6= φ then
15: forward < e, K ∩KI > through I
16: else
17: use content-match to find at most n matching subscriptions

and store their keys in K≤n

18: if K≤n 6= φ then
19: forward < e, K≤n > through I
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3.4 Simulation methodology

We simulated the following event forwarding strategies: Never-Reuse, Always-Reuse and

Partial-Reuse using the OMNeT++[37] discrete event simulator. All the simulations were per-

formed on a computer with an Intel Pentium 4 2.4GHz processor, 512KB Cache and 1GB

RAM. Our machine is installed with Red Hat Enterprise Linux WS release 4.

3.4.1 Configuration

We considered a system with 100 routers arranged in a balanced binary tree topology,

whose depth was blog 100c = 6, and diameter was 12. Subscriptions and events are assumed

w.l.o.g. to contain only numeric attributes. For instance, a subscription to textbooks might

be S = (year ∈ [1999, 2004], price ∈ [30, 60]) and an event advertising a book might be E =

(year = 2002, price = 40.50). Note that lookup reuse strategy is not restricted to numeric

data, and can be used with any form of events and subscriptions.

Each experiment uses a total amount of 10, 000 subscriptions and 1, 000 events. They

are evenly distributed across all the routers at the beginning of a simulation. When the

simulation starts, every router broadcasts its local subscriptions to populate the distributed

routing tables. After all subscriptions have been registered and indexed at the routers, routers

start publishing events which are delivered to interested subscribers by using the selected event

forwarding algorithm.

We evaluated the performance of event forwarding algorithms under different scenarios,

which were characterized by a parameter called matching density. Informally, the matching

density is the average fraction of the subscriptions that match a published event. We consider

inputs with the following matching densities: 0.1%, 0.2%, 0.5%, 1%, 5%, 10%, 15% and 20%.

For example, with a matching density of 0.5%, each event will match approximately 10, 000×
0.5/100 = 50 subscriptions.

We also tested Partial-Reuse algorithm by trying different thresholds: 20, 40, 60, 80 and

100. The thresholds impose an upper bound on the number of matching subscriptions to

search, when a router uses any content-match algorithm to evaluate an event.
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Performance metric: We measured the event processing overhead, which is the total

time spent by all routers in processing events. Note that this does not include the time for

setting up the system, or for propagating subscriptions. An event forwarding strategy is better

if the event processing overhead is smaller.

3.4.2 Data model

In the context of numeric data, an event can be thought of as a point in high-dimensional

space and a subscription is a hyper rectangle in the same space. The space dimension is equal

to the number of available attributes. We create 5 attributes for events and subscriptions in

our simulation. For a single attribute, we consider that an event value is a random number

drawn from the range [0, 1] and a subscription predicate is a random interval within the same

range.

One challenge in the evaluation of publish-subscribe system has been the lack of real life

trace data. In the absence of this, we experiment with two distributions for events and sub-

scriptions. Both of them are widely used in the pub-sub literature [46, 47, 8, 30].

Normal distribution Riabov et.al. derived this model in [46, 47] based on a systematic

study of people’s interests on the stock market transactions. It approximated the basic prop-

erties of real-life subscriptions, while being tuned for rectangle-based subscriptions like what

we study in this paper.

For a single attribute, the event value follows a normal distribution. The center of a

subscription interval also follows a normal distribution. The two distributions share the same

mean, but may differ in the variance. The length of a subscription interval follows a Pareto

distribution. The Pareto distribution is formulated as Pr(X>x)=
(

x
a

)−b for all x ≥ a and b > 1.

The mean of a Pareto distribution is ba
b−1 .

We experiment with two normal distributions: norm-1 and norm -2. We use (µ1, σ1) =

(0.5, 0.25) for events and (µ2, σ2) = (0.5, 0.125) for the center of subscription interval in norm-

1. In norm-2, we use (µ, σ) = (0.5, 0.25) for both events and the center of subscription interval.

For both distributions, we set b = 19 and vary a to generate subscription intervals of different
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lengths. By adjusting the average interval length, we are able to control the probability that an

event matches a subscription on a single attribute. This further leads to the desired matching

density.

Uniform distribution Researchers used this model in [8, 30]. For a single attribute, the

event value is uniformly drawn from the range [0, 1]. The length ` of a subscription interval is

fixed as some constant, while one of its endpoints is chosen uniformly from the range [0, 1− `].

If we use γ to denote the matching density and let n represent the number of attributes, then

the connection between γ and ` is roughly γ = `n.

3.4.3 Subscription indexing

Routers often build subscription index to expedite content-based event matching. Though

lookup reuse intends to replace expensive content-match with cheap hash-table lookup, it can

not completely eliminate them. This is true at least with the event source. So we still need

some form of subscription index at every router. However the exact form of indexing is not a

major concern, as long as content-match runs significantly slower than hash-table lookup.

Content-based event matching has been extensively studied in the literature. They can

be mainly classified into two categories: counting algorithm [12, 19, 40] and tree-based ap-

proach [28, 7, 1, 50]. We pick one indexing out of each category and implement them in our

simulation. In this section, we give a brief introduction about the selected subscription index.

Counting algorithm The counting algorithm maintains a counter for each subscription

that records the number of predicates in a subscription which are satisfied by an event. Given

an event, the algorithm iterates over the event’s attributes. For each attribute, it finds all sub-

scriptions whose corresponding predicate is satisfied by the event and increments the counters

of these subscriptions. After going over all the attributes, the algorithm returns subscriptions

whose counter values equal their number of predicates.
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K-d tree algorithm This demonstrates an application of the well-known data structure

“K-d Tree” to the indexing of numeric subscriptions. K-d tree corresponds to a recursive

partitioning of a k-dimensional space. It is a useful data structure for multidimensional range

searching and the details can be found in [2].

If subscriptions and events have k attributes, we can treat them as 2k dimensional points as

follows. We can transform an event e = (x1, x2, . . . , xk) to e′ = (−x1, x1,−x2, x2, . . . ,−xk, xk),

and a subscription s = ([l1, r1], [l2, r2], . . . , [lk, rk]) to s′ = (−l1, r1,−l2, r2, . . . ,−lk, rk).

If s matches e, we have every coordinate of s′ must be no less than the corresponding coordi-

nate of e′. In other words, for a given event e = (x1, x2, . . . , xk), all the subscriptions that match

e correspond to the points falling in the region ([−x1, +∞], [x1, +∞], . . . , [−xk, +∞], [xk,+∞]).

So content-based event matching can be transformed into multidimensional range search, which

in turn can be efficiently answered by K-d tree.

3.4.4 Summary

We evaluate the performance of lookup reuse by employing it in conjunction with two

representative content-match algorithms: the counting and the K-d tree algorithm. Due to

the absence of trace data, we experiment with three distributions of events and subscriptions:

norm-1, norm-2 and uniform. This provides in total six combinations of [content-match al-

gorithm, data distribution model]. For each individual pair, we measure the performance of

selected strategies under different scenarios, which are characterized by the matching density.

We select the following discrete matching densities: 0.1%, 0.2%, 0.5%, 1%, 5%, 10%, 15% and

20%. Finally we tested different thresholds for Partial-Reuse strategy. They are 20, 40, 60, 80

and 100.

3.5 Simulation results

We make at a high level the following conclusions over the simulation results:

(1) Lookup reuse provides faster event forwarding regardless of the distributions of events

and subscriptions. For example, by combining lookup reuse with the counting algorithm,
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we can reduce the event processing overhead on average by 39% to 48% under the listed data

distributions. The average is taken over various inputs with small and high matching densities.

(2) Lookup reuse provides faster event forwarding regardless of the underlying content-match

algorithm. Although K-d tree runs much faster in content-match than the counting algorithm

for numeric subscriptions, we can still achieve an average reduction of the event processing

overhead by 25% - 35% under the listed data distributions.

(3) In most cases, Always-Reuse is not the best strategy for reusing lookups. In contrast,

Partial-Reuse outperforms both Never-Reuse and Always-Reuse on most inputs, suggesting

that Partial-Reuse is the best strategy for reusing lookups.

(4) Most benefits of Partial-Reuse can be realized by reusing a fairly small number of keys,

about 40-60. Even when the matching density is very high (say 20%, where each event matches

about 2, 000 subscriptions), a threshold of 60 lookups works well, and yields the best perfor-

mance among the tested strategies.

The low threshold for Partial-Reuse is good news from the standpoint of message overhead.

A threshold of 60 means that each event carries at most 60 keys. Since each key is a hash

value taking 4 bytes, the message overhead is no more than 240 bytes, maybe much smaller.

When compared with the size of an event, which is typically an XML document or database

tuples, the message overhead may not be significant. Furthermore, a low threshold means that

no matter how popular an event is, the load of matching an event or performing key lookups

at a router does not increase too much due to lookup reuse. This leads to better load balanced

event forwarding.

We now analyze the results of the [counting, norm-1] combination. In all the graphs,

Partial-N denotes the Partial-Reuse strategy with a threshold of N . Figure 3.1(a) tabulates the

event processing overhead of various lookup reuse strategies under different matching densities.

We can see that the performance of Always-Reuse degrades very quickly as the matching density

increases. In contrast, Never-Reuse is not appealing when the matching density is below 15%.

Overall Partial-Reuse outperforms both Never-Reuse and Always-Reuse on most inputs.
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0.1% 0.2% 0.5% 1% 5% 10% 15% 20%

Never 4.51 5.28 5.71 6.12 5.89 5.47 5.01 4.43

Partial-20 1.95 2.21 2.47 2.80 3.46 3.79 4.10 4.38

Partial-40 1.94 2.17 2.46 2.74 3.45 3.87 4.15 4.56

Partial-60 1.92 2.16 2.41 2.74 3.46 3.89 4.22 4.59

Partial-80 1.91 2.17 2.42 2.75 3.56 3.99 4.26 4.67

Partial-100 1.90 2.14 2.44 2.78 3.60 4.07 4.34 4.73

Always 1.87 2.07 2.54 3.35 11.77 30.00 62.29 104.88

(a) Event processing overhead of lookup reuse strategies (time in seconds)
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Figure 3.1: Counting algorithm, norm-1 distribution

Figure 3.4(a) compares the relative performance of different Partial-Reuse strategies. The

relative performance measures the deviation in time of each forwarding strategy from the best

strategy observed on every input. For instance, if the overhead of Partial-40 on an input is

1.2 seconds, and the shortest time measured among all forwarding strategies for the same

input is 1.0 second, then the graph shows a deviation of 25% for Partial-40. In our simulation,

Never-Reuse has a deviation declining from 142% down to 1.1%. Always-Reuse has a deviation

climbing from 0% up to 2294%. Both curves are not drawn in Figure 3.4(a), as they don’t fit

easily into the graph. It is clear, from Figure 3.4(a), that there is no absolute winner in that no

single forwarding strategy is consistently the best over all inputs. However, all Partial-Reuse

strategies illustrated here come close to the optimal in every case. It can be seen that on every

input, their overhead is within 8% of the optimal for that specific input.

To better interpret the displayed results, we break down the event processing overhead

into three parts: (1) time of content-match at the event source. (2) time of content-match at

downstream routers and (3) time of key lookup at downstream routers. The reason why Lookup

Reuse gains a benefit is because it replaces expensive content-match with cheap key lookup
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Figure 3.2: Counting algorithm, norm-2 distribution
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Figure 3.3: Counting algorithm, uniform distribution

at downstream routers. Thus we expect to see a decreasing of item(2) and an increasing of

item(3) at these places. The tradeoffs are illustrated in Figure 3.1(c) and 3.1(d). We infer that

by investing a little time on key lookup, the cost of content-match at downstream routers has

declined significantly irrespective of the matching density. The leverage effect can be clearly

seen if you compare the height of adjacent bars for every Partial-N algorithm. As to the event

source, it spends more time in content-match in order to generate the keys to be reused by

downstream routers. The lines in Figure 3.1(c) and 3.1(d) show the total increment in time

related to Lookup Reuse. It is a combination of the increment in both item(1) and item(3).

We can see even with the addition of the extra cost at event source, the decrement in item(2)

is still large enough to counteract the total increment. Thus Lookup Reuse helps to reduce the

event processing overhead.
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The results of the other two distributions, when employing lookup reuse with the counting

algorithm, are shown in Figure 3.2 and 3.3. Qualitatively the trends are similar to the norm-1

distribution. For most inputs all illustrated Partial-Reuse strategies incur an overhead within

10% of the optimal. When the matching density is high, most of the benefits of lookup reuse

can be achieved by reusing just a small number of keys, about 20-40. Although the same

configuration yields a worse performance when the density is below 0.5%, it is noticeable that

the relative performance of Never-Reuse under these inputs goes beyond 250%.

We also conducted simulations by employing lookup reuse with the K-d tree algorithm.

For brevity, we compared the performance of Partial-Reuse when used in conjunction with

the two content-match algorithms under the norm-1 distribution. The results are given in

Figure 3.4. It shows that the benefits of lookup reuse is less pronounced when the K-d tree

algorithm is in charge. This is because K-d tree seems more efficient in content-match than the

counting algorithm, according to the time listed in Figure 3.4(c). But the relative performance

of Partial-Reuse is still within 10% on most inputs for the K-d tree algorithm. The comparison

reveals that by switching to a more efficient content-match algorithm, we didn’t observe a

drastic degeneration on the performance of Partial-Reuse strategies. Therefore the exact form

of subscription indexing is not crucial to the performance of Lookup Reuse strategies.
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0.1% 1052 182

0.2% 1007 181

0.5% 857 173

1% 720 144

5% 391 77
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15% 177 42
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(c) Average time of evaluating a sin-
gle event(time in microseconds)

Figure 3.4: Comparison of the counting and K-d tree algorithm (norm-1 distribution)

Figure 3.4(b) did show that when the matching density is between 15% and 20%, Partial-

Reuse exhibited a certain kind of degeneration. If we correlate the trend reflected by Fig-
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ure 3.4(b) with the numbers listed in Figure 3.4(c), it can be inferred that the advantage of

Partial-Reuse starts to diminish if the average time spent by K-d tree in content-match is

below 40. So we conclude that Lookup Reuse will gain a benefit as long as content-match runs

significantly slower than key lookup. Such property is important, as it justifies why we want

to forgo content-match for key lookup at downstream routers.

3.6 Impact of subscription covering

So far we assume that subscriptions are broadcasted inside the pub-sub network. Recently

researchers [50, 39, 30, 57, 61] proposed to take advantage of the covering relationship among

subscriptions to realize efficient subscription propagation.

Definition 1 Let N(s) denote the set of all events that match subscription s. Let s1 and s2 be

two arbitrary subscriptions. We say that s1 covers s2, denoted by s1 ⊇ s2, iff N(s1) ⊇ N(s2).

Subscription covering (defined above) is an effective way to reduce routing table sizes

and speed up event matching. A pub-sub router can exploit covering relationship among

subscriptions as follows: Let I represent one interface at a pub-sub router. The router received

a subscription s2 and decided to forward it through I. We can check to see if some existing

subscription s1, which has been forwarded through I, covers s2. If it does, then s2 is not

forwarded since all events matching s2 will be received due to the prior propagation of s1.

Repeating this process at every intermediate router can result in a significant reduction in the

number of forwarded subscriptions. As a consequence, the sizes of routing tables decrease,

leading to faster content-based event matching at every router.

Efficient utilization of covering demands the support of new data structure. To be specific,

we need novel indexing to organize subscriptions for fast detection of the covering relation-

ship. Meanwhile because of unsubscribing, some subscriptions which were previously covered

may no longer be covered by any other subscription. Such subscriptions should be identified

and forwarded to other routers. Otherwise clients may miss interesting events in the future.

To facilitate this task, we need a separate data structure to maintain the detected covering
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relations. However the discussion of these techniques goes beyond the scope of this paper.

Interested readers can check out the papers cited in the beginning of this section.

In this section, we want to investigate the impact of subscription covering to the proposed

Lookup Reuse strategies. First of all, the presence of covering will invalidate Always-Reuse

and other similar approaches [9, 29] proposed in the literature. If covering is in place, then a

router just forwards a minimal set of received subscriptions to its neighboring routers. Under

this circumstance, the event source can not always generate a complete list of keys of matching

subscriptions, because some matching subscriptions are not propagated to the event source

due to the presence of covering. If we continue to forward events only based on key lookups

inside the network, we undertake the risk of missing interested subscribers.

On the other hand, Partial-Reuse remains a valid solution. It already contains in Al-

gorithm 3.5 the instructions to deal with the case when the received key list is incomplete.

The modified Partial-Reuse algorithm, which works in the presence of covering, is given in

Algorithm 3.6.

Algorithm 3.6 Partial-Reuse (event e, set<key> K) /* downstream routers */

1: let KI represent the set of subscription keys associated with interface I

2: for each interface I except the one from which e is received do
3: if I is the local interface then
4: use content-match to find all matching subscriptions
5: deliver e to interested local subscribers
6: else
7: if (K ∩KI) 6= φ then
8: forward < e,K ∩KI > through I
9: else

10: use content-match to find at most n matching subscriptions
and store their keys in K≤n

11: if K≤n 6= φ then
12: forward < e, K≤n > through I

Our next question is how well Partial-Reuse performs with the introduction of covering? To

answer this question, we conducted simulations to measure the performance of Partial-Reuse

under the new model of subscription propagation for the [counting, norm-1] combination.

Figure 3.5(a) shows that the relative performance of Partial-Reuse still stays within 10% of
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the observed best strategy on most inputs. Furthermore with the introduction of covering,

Partial-20 consistently yields the best performance among selected Partial-Reuse strategies. It

reinforces the observation that most of the benefits of Partial-Reuse can be achieved through

reusing a small number of keys.
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Figure 3.5: Counting algorithm, norm-1 distribution, under subscription covering

Figure 3.5(b) compared the performance advantage Partial-Reuse holds over Never-Reuse

with/without covering. We notice that the advantage is roughly halved across all the matching

densities with the introduction of covering. This is mainly due to the increasing cost of Partial-

Reuse as indicated in Figure 3.5(c). We notice that this increasing is largely attributed to the

slowed content-match at downstream routers. By comparing Algorithm 3.5 and Algorithm 3.6,

we inferred that with the introduction of covering, there is no way for a router to judge

whether the received key list is complete or not, even though it could be complete in reality.

Consequently some part of content-match, which originally could be replaced by key lookups,

now have to be performed. This directly leads to the increasing cost of Partial-Reuse under

the new subscription propagation model.
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CHAPTER 4. Efficient management of subscription covering

In Chapter 2, we discussed a basic model of propagating subscriptions inside a distributed

publish/subscribe system. One problem with the above approach is that every router needs

global knowledge of all subscriptions, which results in large routing tables. This in turn leads

to slower matching of notifications and greater latency for event delivery. Clearly this is a

serious problem because timely delivery of events is important in most systems. To alleviate

this, multiple groups [58, 39, 50, 30, 57, 61, 10] suggested exploiting the covering relations

among subscriptions to significantly reduce routing table sizes.

In this chapter, we will define the notion of subscription covering and explain how it can

be used to optimize the propagation of subscriptions. The introduction of covering brings

new problems though, i.e. fast detection and maintenance of covering relations. In the lit-

erature, the subscription POSET and its variants are proposed as solutions to this problem,

combining the detection and maintenance of covering into a single data structure. We take a

different approach by decoupling the detection of covering from its maintenance. We propose

a generic framework consisting of a subscription index to support fast detection of covering

and an easy-to-update graph dynamically maintaining detected covering relations. We formal-

ize the interaction between the two components and show that a simple heuristic provides a

2-approximation algorithm for optimizing the number of covering queries on average. Experi-

mental results show that the proposed framework offers a significant performance improvement

over existing POSET family.

Being an indispensable part of the generic framework, the detection of covering is of

paramount importance to the framework’s efficiency. However it remains a hard combina-

torial problem, in spite of the help of a subscription index. Its special case, covering detection



www.manaraa.com

40

for numeric subscriptions, can be modeled as a multidimensional point dominance problem,

for which no worst-case time efficient solution exists.

To alleviate the complexity, we introduce a novel approach called approximate subscription

covering, which provides much of the benefits of covering at a fraction of its cost. By forgoing an

exhaustive search for covering subscriptions in favor of an approximate search, it is shown that

the time complexity of covering detection can be dramatically reduced. The tradeoff between

the efficiency of covering detection and the approximation error is demonstrated through the

analysis of a subscription index built for covering detection based on space filling curves.

4.1 A generic framework for the management of subscription covering

Subscription covering is an effective way to reduce the complexity of content-based routing

and avoid unnecessary proliferation of subscriptions throughout the system. The notion of

covering is formalized in Definition 2. For example, subscription s1 = {airline=ANY, price <

350} covers s2 = {airline=UA, price < 300}, because the former has a broader range of air

tickets to select.

Definition 2 Let N(s) denote the set of all notifications that match subscription s. Let s1

and s2 be two subscriptions. We say that s1 covers s2, denoted by s1 ⊇ s2, iff N(s1) ⊇ N(s2).

We can take advantage of covering relations to optimize subscription propagation as follows:

Let I represent an interface at a pub-sub router. The router received a subscription s2 and

decided to forward it through I. We can check if there exists some subscription s1, which

covers s2 and was forwarded through I. If s1 exists, then s2 is not forwarded since all events

matching s2 will be received due to the prior propagation of s1. Repeating this process at

every router can result in a significant reduction in the number of forwarded subscriptions.

The advantages are twofold: (1) The number of subscribe and unsubscribe control messages is

reduced, and (2) The sizes of routing tables decrease, leading to faster notification forwarding.

While these advantages are well recognized, subscription covering by itself is a hard prob-

lem. First, the publish-subscribe system is a dynamic online messaging system. Clients can
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submit and withdraw subscriptions at any time. With the introduction of covering, newly

arrived subscriptions may not be forwarded to other routers if they are already covered by

existing subscriptions. Such optimization can pose problem when we unsubscribe a registered

subscription s. A router needs to check those subscriptions which were covered by s, as they

may no longer be covered by any other subscription after the removal of s. Such subscrip-

tions should be identified and forwarded to other routers. Otherwise clients may not receive

interesting notifications in the future. In order to quickly identify these subscriptions, we need

a data structure to maintain detected covering relations. We name such data structure the

relation graph. Second, for a large distributed system, a pub-sub router can receive hundreds

of subscriptions in a second. The subscription database can be populated fairly quickly. As a

consequence, it gets much harder to find existing subscriptions which cover a new one. Similar

to the database domain, some kind of subscription index is desired to expedite the covering

detection. The two components are connected in a way that the construction of a relation

graph relies on the subscription index to detect existing covering relations.

4.1.1 Relation graph

Relation graph is used to maintain detected covering relations. In a relation graph, nodes

represent individual subscriptions. A directed edge indicates detected covering relation between

a pair of subscriptions.

The first relation graph was presented in the Siena system [10]. Carzaniga et.al. built the

subscription POSET(partially ordered set) to manage subscriptions registered at a pub-sub

router. The Siena POSET is limited in terms of the scalability, because it attempts to maintain

a fine-grained hierarchy of the covering relation. Tarkoma et.al. relaxed some constraints and

proposed POSET-derived forest and other variants that perform considerably better under

frequent subscription additions and removals. These data structures in the POSET family are

going to be discussed in Section 4.3.

The construction of a relation graph relies on a separate mechanism whose function is to

find existing subscriptions which cover the new one. For POSET structures, they use the same
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data structure for the purpose of covering detection. Their algorithm is to traverse the POSET

in breadth-first-order and test if a visited node covers the new subscription on the fly. This is a

linear time solution. However the detection of covering can be made more efficient by building

some form of subscription index. Unlike the POSET structures combining the detection of

covering with its maintenance, we decoupled the two tasks and built separate data structure

for either of them.

In our approach, the detection of covering is facilitated by a subscription index and the

relation graph depends on the service of the index to realize fast updating. Since covering de-

tection is a time-intensive operation, the cost of updating a relation graph is largely determined

by the frequency of which we query the subscription index. We investigated the interaction

between the two components and conducted a formal analysis to show that a simple structure

called G1, where at most one covering subscription is to be searched (if any) for each new

subscription, provides a 2-approximation algorithm for optimizing the total number of queries

on average to the underlying index. To the best of our knowledge, this is the first study to

analyze the tradeoffs among possible structures of a relation graph. Our theoretical findings

are corroborated by our experiments, which demonstrate that G1 outperforms other structures

over a range of system parameters.

4.1.2 Indexing for covering detection

Similar to the database domain, subscription index can be used to quickly detect covering

relations. Due to frequent subscription additions and removals, the index should be a dynamic

data structure supporting the following operations: (1) Fast insertion and deletion of subscrip-

tions. (2)Given a new subscription, return a set of existing subscriptions which cover the new

one. Our approach allows a user to choose existing index or implement his own. Examples of

existing indexes built for covering detection can be found in [30, 50, 34]. A brief description

about them is given in Section 4.5.
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4.1.3 Framework composition

Our solution framework is structured in two layers:

• The upper layer is a relation graph, which stores the detected covering relations among

subscriptions.

• The lower layer is a subscription index, which is used to detect new covering relations

when subscriptions are added to or removed from the database.

The framework supports the following operations:

Subscribe: When a new subscription s arrives, we add it to the relation graph. The index is

used to detect if there exists subscriptions covering s. If s is covered, it is not forwarded. The

index can find covering subscriptions (if any) by examining only a fraction of the subscriptions

in the database.

Unsubscribe: When a registered subscription s is unsubscribed, we remove s from the relation

graph and locate subscriptions which lose all their coverings due to the removal of s. We query

the index to determine if these subscriptions are still covered. If not, we need to forward them

to other routers.

What makes the framework appealing is that it decouples the detection of covering from

its maintenance. By taking a modular approach, we provide the flexibility of enhancing the

performance by improving the design of individual component separately. In this paper, we

are going to show that a simple graph design called G1 enjoys faster updating than existing

POSET structures. If sophisticated subscription index is in use, the performance gain will be

more pronounced.

We made the following contributions:

• A generic solution framework to efficiently manage covering relations among subscrip-

tions in a distributed publish-subscribe system and provide the maximal flexibility of

customization.

• A theoretical proof that a simple relation graph tracking a single covering relation for

each subscription is sufficient to derive an algorithm whose average total covering de-
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tection needs are within a factor of two of the optimal. This statement is reinforced by

experimental validation.

• A comparative study of the proposed solutions to the problem of subscription covering.

Experiments show that our modular approach yields significant performance gain over

monolithic POSET structures.

4.2 Related work on the management of subscription covering

The first data structure for maintaining the covering relation was the POSET(partially

ordered set) implemented in the Siena [54] system. For each subscription, POSET stores

the information of its immediate predecessors and successors. These terms are explained in

Section 4.3. In short, POSET reveals a fine-grained hierarchical covering relation among all

the subscriptions. Due to this extravagant feature, POSET is found not easy to update and

limited in terms of the scalability [54].

Tarkoma [58] relaxed some constraints in the construction of POSET and designed POSET-

derived forest and other variants that perform considerably better under frequent subscription

additions and removals. In general, a pub-sub router has multiple interfaces used to connect

with neighboring routers. An incoming subscription often needs to be forwarded through

several interfaces. The POSET variants are incorporated with techniques optimizing those

interface-specific operations.

POSET structures lack an efficient way to detect the covering relations required by its

construction or updating. Researchers explored the building of subscription index to expedite

the detection of covering. Examples of generic subscription index used for covering detection

include MBD(modified binary decision diagrams) [30] used in the Toronto Publish/Subscribe

System and the counting algorithm [34] applied in the Rebeca system.

For subscriptions containing only numeric attributes, Shen et.al. [50] showed the equiva-

lency of subscription covering to the problem of multidimensional range search and used spatial

data structures like K-d tree and space filling curve to organize subscriptions. In a recent work,

Ouksel et.al. took a novel approach to use a probabilistic algorithm for covering detection.



www.manaraa.com

45

The complexity of their algorithm is O(nm), where n is the number of subscriptions and m is

the number of attributes.

So far the research on subscription covering proceeded in two parallel paths. The studies

inventing new data structures to maintain covering relation lacked efficient method to detect

covering. On the other hand, the researches looking for efficient solution to the detection of

covering didn’t mention how to effectively maintain the discovered relations as well. We are

the first group which investigates the interaction between the two components and proposed

a coherent framework to completely address the covering problem.

Finally subscription merging is considered as an advanced technique used to produce more

compact routing tables in a publish-subscribe system. The MBD index provides good heuristics

about mergeable subscriptions. Triantafillou et al. presented a summarization structure [61]

to compress the subscriptions stored by a pub-sub router. They present novel algorithms to

efficiently propagate these subscription summaries and use these summaries to route matched

events.

4.3 Design of relation graph

A relation graph maintains detected covering relation among subscriptions. It is instru-

mental in deciding whether a received subscription is covered, thus needs not be forwarded. In

this section, we explore the design space of a relation graph.

In a distributed publish-subscribe system, a router has multiple interfaces used to connect

with neighboring routers. It is common for a pub-sub router to forward an incoming subscrip-

tion through several interfaces. To simplify our description, we assume from now on that a

relation graph is created for every interface of a router to maintain the covering relation among

all the subscriptions that a router passes to the associated interface.

There exists many ways to design a relation graph. The following section reviews existing

proposals. The construction of a relation graph depends on a separate mechanism whose

function is to find existing covering relations. This mechanism can be built into the graph

by itself or can be delegated to a separate data structure. The POSET structures take the
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former approach, while our modular framework follows the latter one. In our approach, the

detection of covering is facilitated by a subscription index. Thus the design of a relation graph

is relatively independent. To analyze the tradeoffs, we simply assume an abstract service

interface provided by the subscription index and ignore its concrete implementation.

4.3.1 Dense graph G∗

Probably the most straightforward design is a dense graph G∗ defined as follows. The nodes

of G∗ are S, the set of subscriptions. There is an edge in G∗ directed from s1 ∈ S to s2 ∈ S iff

s1 ⊇ s2. In other words, G∗ maintains all pairwise covering relations among the subscriptions

in S. Clearly, we only need to forward those subscriptions which have no incoming edges in

G∗. The rest are covered by at least one other subscription and do not need to be forwarded

(unless this subscription was received before its covering subscription).

The problem with G∗ is that it may have too many edges and may be too expensive to

maintain as subscriptions are added and deleted. For example, if a new subscription s arrives,

which is covered by all existing subscriptions, then edges have to be created from each existing

subscription into s, and this would take time O(|S|) (this is in addition to the time taken to

discover all the covering relations, which is even more expensive). It might happen that s is

unsubscribed immediately, so that all this work is wasted. This example indicates G∗ can often

be an overkill.

4.3.2 Subscription POSET

Subscription POSET represents a partially ordered set of subscriptions. It is used in the

Siena publish-subscribe system [10] for maintaining covering relation among subscriptions.

This partial order is defined by the covering relation among subscriptions. In particular, it

introduces the new concepts of immediate predecessors and successors of a subscription.

Definition 3 Subscription s1 is an immediate predecessor of subscription s2 and s2 is an

immediate successor of s1 if and only if s1 ⊃ s2 and there exists no other subscription s3

in the POSET such that s1 ⊃ s3 ⊃ s2.
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We know that covering relations are transitive, but POSET only connects a subscription

with its immediate predecessors and successors. Thus it contains less number of edges than

G∗ does. In fact, POSET can be considered as a variant of G∗, where redundant edges are

removed from G∗, but every directed edge in G∗ is implicitly contained in the graph through

a directed path between the vertices.

The “top-level” subscriptions, which are referred as “roots”, are not covered by any other

subscription in the POSET. Thus they should be forwarded by a pub-sub router. Non-root

subscriptions generally don’t contribute to the forwarding traffic, unless a subscription was

received before its ancestors.

The nice thing about POSET is that it exhibits a fine-grained hierarchical covering relation

among all the subscriptions. However this extravagant granularity could compromise its per-

formance. The bottleneck lies in the search of the tightest covering relations. In addition, it

is required to return a complete set of predecessors and successors for every new subscription.

In face of the limitation, Tarkoma et.al. [58] proposed the following POSET variant.

(a) Dense Graph G∗ (b) Siena POSET (c) POSET-derived Forest

Figure 4.1: Proposed graph structures

4.3.3 POSET-derived forest

The POSET-derived forest is similar to the Siena POSET with one exception that each sub-

scription only keeps one immediate predecessor and a subset of available immediate successors.

The addition and removal algorithms are described in [58]. With fewer number of predecessors

and successors to maintain, the forest is demonstrated to have better performance than the

POSET under frequent subscription additions and removals.
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POSET-derived forest preserves some important properties of POSET, such as minimal

cover and sibling purity. The formal definitions are given in [58]. In brief, “minimal cover”

says that the root nodes in the forest correspond to a minimal set of the subscriptions which

are not covered, thus need to be forwarded by a router. The property of “sibling purity”

claims that no two children with the same parent cover each other, or in other words form a

parent-child relationship. It is easy to maintain sibling purity for the add operation, but more

complicated for the del operation.

The Siena POSET and its variant share the common nature of looking for the tightest

covering relation when inserting a node into the graph. This property relocates a node as

far away from the roots as possible. It helps to constrain a node’s degree by stretching the

relation graph vertically. The del operation, which detaches predecessors and successors from

the selected node and reconnects them properly, might benefit from this property. On the other

hand, this attribute increases the complexity of the add operation. As we know, finding a single

covering subscription is a time consuming operation. It will be more costly for discovering the

tightest covering relation for each subscription. If you review the deletion operation in [58], it

repeatedly invokes the add routine for every disconnected successor. Thus it is unclear whether

the del operation will actually benefit from this property.

4.3.4 Flat graph Gk

In practice it is important to know whether a new subscription is covered or not. But it

does not matter whether the detected covering relation is tight or loose. In other words, the

fine granularity of covering relation exhibited by the POSET structures might be an overkill

for the sole purpose of subscription covering. Therefore we are motivated to simplify the graph

design. In short, we are interested in a directed graph G with vertex set S (the same as G∗),

and edge set E ⊂ E∗. The edge set E must satisfy the following key property.

Property 1 If s ∈ S has a non-zero in-degree in G∗, then it should have a non-zero in-degree

in G.
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This way, a new subscription which is covered by an existing one will never be forwarded, since

it will have a non-zero in-degree in G∗, and hence, a non-zero in-degree in G.

(a) Example of G1 (b) Example of G2

Figure 4.2: Flat graph Gk

We now define a family of relation graphs Gk, which are much simpler to maintain than

formerly mentioned structures. Let k be a natural number greater than or equal to 1. The

vertex set of Gk is S and the edge set E(Gk) ⊆ E∗ has the following property: For subscription

s, let C(s) denote {t ∈ S, t 6= s | t ⊇ s}, i.e., the set of all subscriptions covering s (note

that C(s) might be empty). If |C(s)| ≥ k, then there are incoming edges into s from exactly

k other subscriptions belonging to C(s) which cover it. If |C(s)| < k, then there are incoming

edges into s from all subscriptions in C(s). Clearly, Gk satisfies Property 1 for all k ≥ 1.

4.4 Analysis of Gk

In this section, we analyze the cost of updating the Gk graph. First, we present the

algorithms of adding to or removing from Gk a subscription. The major operation here is

to search in the subscription index for covering relations. It is natural to use the number

of covering queries as a metric to approximate the cost of graph updating. We will discuss

the tradeoff caused by choosing different subscript k. We develop a probabilistic analysis to

show that graph G1 yields a 2-approximation algorithm for optimizing the number of covering

queries on average.
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4.4.1 Algorithms for addition and deletion

Let S denote the current set of received subscriptions. The algorithms to maintain Gk

in the presence of additions and deletions to S follows. The add operation is described in

Algorithm 4.1 and del operation in Algorithm 4.2.

Algorithm 4.1 Insertion: new subscription s arrives.
1: if s exists then
2: increment its counter by one and return
3: else
4: Create a new node for s in Gk.
5: C ← covk(S, s).
6: if |C| = 0 then
7: forward s to other routers
8: else
9: update Gk by adding directed edges from every subscription in C to s

10: add s into the index

We assume that the underlying subscription index provides us a function cov`(S, s). If s

is covered by ` or more subscriptions in S, the function returns ` subscriptions which cover s.

Otherwise, the function returns all the subscriptions which cover s (note that this set may be

empty).

In addition, a pub-sub router can receive identical subscriptions from different clients and

pass them to the same interface. So we keep a counter for every node in the relation graph to

keep track of the frequency of a particular subscription.

4.4.2 Cost of maintaining Gk

For which value of k, does Gk give us the most efficient algorithm? Assuming that k is

a small integer, the cost of handling subscribe is dominated by the cost of covk(). Since it is

always more expensive to find more covering subscriptions, the cost of covk() strictly increases

with k. Thus, the cost of addition clearly increases with k.

Meanwhile the cost of handling unsubscribe might decrease. If k increases, the average

in-degree of a node in Gk increases, making it less likely to lose all the covering relations once

another subscription is deleted from Gk. However in any directed graph, the sum of the out-
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Algorithm 4.2 Deletion: request to unsubscribe s arrives.
1: if the counter of s > 1 then
2: decrement the counter by one and return
3: else
4: delete s from Gk and the index
5: let T be a set of children of s which has an in-degree of 0 in Gk.
6: for each t ∈ T do
7: Ct ← covk(S, t).
8: if |Ct| = 0 then
9: forward t to the neighboring router

10: else
11: adding directed edges from every node in Ct into t.
12: if s was formerly forwarded then
13: forward the unsubscription request to the neighboring router

degrees of all the nodes equals the sum of their in-degrees. Therefore the average number of

out-neighbors of a node also increases with k. This means that we need to inspect on average

more nodes about their covering status when a node in Gk is deleted.

The question is whether the increase in the cost of handling subscribes can be offset by

the decreased cost of handling unsubscribes. We now present evidence to show that choosing

k = 1 gives us a total cost which is close to the optimal, on the average. While this does not

mean that k = 1 is always the best choice, it implies that it is usually a good choice. The

above statement is also supported by our experimental results presented in Section 4.5.

4.4.3 Analysis of G1

We consider a probabilistic model of the pattern of unsubscribes for our analysis. Consider a

sequence Q = o1, o2, . . . on of n subscribe and unsubscribe operations. The subscribe operations

may be for arbitrary subscriptions, and each unsubscribe operation unsubscribes to a randomly

chosen subscription that is currently subscribed for. Let ns denote the number of subscribe

operations in Q and nu the number of unsubscribe operations, so that ns +nu = n. We do not

make any assumptions on the formats of the subscriptions, hence our analysis holds for any

type of subscriptions, not just numeric ones.

The major cost in the algorithms for handling subscribes and unsubscribes is the time spent
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in the routine covk(). Hence, our metric for the cost of handling Q, denoted by costk(Q), is

defined as the number of times a call is made to covk(). Note that costk(Q) is a random variable

since the unsubscriptions in Q are chosen randomly from the set of existing subscriptions.

Let qs and qu be the number of calls to covk() made due to the subscribe and unsubscribe

operations respectively.

costk(Q) = qs + qu (4.1)

Since only one call to covk() is made by any subscribe operation,

qs = ns (4.2)

Lemma 1 If the relation graph used is G1, then

E[qu] ≤ nu

Proof: We label the unsubscribe operations 1, 2, . . . nu. For i = 1, 2, . . . nu, let random

variable Xi denote the number of calls to cov1() due to the ith unsubscription.

qu =
i=nu∑

i=1

Xi (4.3)

By linearity of expectation, we have

E[qu] =
i=nu∑

i=1

E[Xi] (4.4)

Suppose the ith unsubscribe operation was for subscription s. Then, Xi is equal to the

out-degree of s in G1 before the deletion of s. Since s is chosen randomly from the current set

of subscriptions in G1, E[Xi] is equal to the expected out-degree of a vertex in G1.

In any directed graph, the sum of the out-degrees of all the nodes equals the sum of the

in-degrees. In graph G1, the in-degree of every node is no more than 1, so that the sum of

in-degrees is no more than |S|. Thus, the expected out-degree of a random node in G1 is no
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more than 1. We have E[Xi] ≤ 1. From Equation 4.4, the lemma follows.

Theorem 1 For every positive integer k,

E[cost1(Q)] ≤ 2 · costk(Q)

Proof: From Equation 4.1, we know cost1(Q) = qs + qu. From Lemma 1 and Equation 4.2,

E[cost1(Q)] = E[qs] + E[qu] ≤ ns + nu. Since the number of unsubscribe operations can never

be greater than the number of subscribe operations, nu ≤ ns. Thus, we have

E[cost1(Q)] ≤ 2ns

However, for any k, the algorithm Gk has to make at least ns calls to covk(), even in

the unlikely scenario that further calls to covk() are never made for unsubscribe operations.

Suppose q∗ denotes the minimum number of queries made by any Gk, k ≥ 1.

q∗ ≥ ns

Thus, we have E[q] ≤ 2q∗, which proves the theorem.

The above theorem tells us that the expected number of calls to covk() made by the G1

algorithm is always within a factor of two from the optimal number. In addition, we know

that the cost of covk() increases with k, so that the covering queries made by G1 are cheaper

than queries made by any other Gk. This presents strong evidence that the G1 algorithm is

one of the best choices among all Gk, k ≥ 1.

4.5 Experiments

The objectives of the experimental study are two-fold: First, we need to determine what

is a good value of k for the graph family Gk. Second, we want to compare the performance of
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our modular approach versus the POSET structures in the presence of frequent subscription

additions and removals.

In this section, we first describe the experiment configuration. Next we briefly discuss the

implementation of some subscription index used for covering detection. This makes it possible

to instantiate our solution framework by combining the Gk graph with a particular subscription

index. Finally we present the experimental results.

4.5.1 Configuration

The key parameters of the generated workload are: n = the total number of subscribe and

unsubscribe operations; d = the number of attributes in each subscription; and p = the odds

of an operation being unsubscribe.

For the sake of simplicity, we only consider subscriptions having numeric attributes. In

this context, each constraint in a subscription is a range query. For example, we can have a

subscription s = {age ∈ [25, 35], weight ∈ [110, 170]}. Furthermore we require w.l.o.g. that

each constraint is an interval uniformly picked from the range [0, 1]. To be specific, two random

numbers between 0 and 1 are generated, sorted and assigned to the ends of a constraint interval.

The number of constraints available in a subscription range from 3 to 6.

The input is a sequence of mixed operations. Each operation is either a subscribe or an un-

subscribe. Each subscribe adds a new subscription, and each unsubscribe removes a randomly

chosen existing subscription. Each operation has a probability of p to be an unsubscribe, and

(1− p) to be a subscribe. Clearly p < 0.5 as there can’t be more unsubscribes than subscribes.

We vary the value of p from 0 to 0.4 at a step of 0.1. Notice that when p = 0, it corresponds to

a scenario with only additions. We experiment with various input sizes, ranging from 10, 000

to 50, 000 operations.

Our performance metric is the total time taken by the covering data structure to process

all the subscribe and unsubscribe commands. Clearly a data structure is superior if it yields a

shorter running time.
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4.5.2 Subscription index

In order to instantiate our generic framework, it is necessary to have a concrete implemen-

tation of the subscription index. Some examples of the index are cited in Section 4.2. We

used the counting algorithm [34] and the K-d tree [50] in our experiment. A brief description

follows.

An event in a publish-subscribe system is normally modeled as a set of (attribute,value)

pairs. A subscription is defined to be a set of conjunctive predicates, each of which specifies

a constraint on the corresponding event attribute. Under this model, we have an alternative

definition for subscription covering.

Definition 4 A subscription S1 covers another subscription S2 if and only if every predicate

in S1 covers the corresponding predicate in S2.

Based on the new definition, the counting algorithm maintains a counter for each subscrip-

tion, which records the number of predicates in it that satisfy the covering relation on the

associated attributes. Given a new subscription, the algorithm iterates over the subscription’s

attributes. For each attribute, it finds all subscriptions which cover the new one on the se-

lected attribute and increments the counters of these subscriptions. After going over all the

attributes, the algorithm returns subscriptions whose counter value equals its total number of

predicates.

The counting algorithm allows a subscription to contain attributes of different data types.

If subscriptions just have numeric attributes like in our study, then an index based on the

K-d tree structure is deemed to be more efficient [50]. K-d tree corresponds to a recursive

partitioning of a k-dimensional space. It is a useful data structure for multidimensional range

searching originally described in [2].

In the context of numeric attributes, we can model subscriptions as hyper rectangles

in a multidimensional space. For a subscription with k attributes, we can transform s =

([l1, r1], [l2, r2], . . . , [lk, rk]) to s′ = (−l1, r1,−l2, r2, . . . ,−lk, rk). That is, a k-dimensional hyper

rectangle is turned into a 2k-dimensional point. It can be verified that subscriptions which cover

s correspond to the points falling in the range ([−x1, +∞], [x1, +∞], . . . , [−xk, +∞], [xk,+∞]).
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Thus the search of covering subscriptions can be reduced to multidimensional range search,

which in turn can be efficiently answered by K-d tree.

The introduction of K-d tree is to illustrate the flexibility of our modular approach. We are

going to show that if the counting algorithm is replaced by the faster K-d tree, the performance

gain achieved by our modular approach will be much more significant.

4.5.3 Ideal structure of Gk

In Section 4.4, we defined a family of relation graphs Gk. The subscript k, which we call

the “reporting mode”, determines the maximum in-degree of any node in the graph. We use

this name because the subscript k specifies the maximum number of covering subscriptions to

be reported by a subscription index. Our experiments show that among all the selected values

of k, G1 consistently yields the best performance. This observation supplements our theoretical

analysis given in Section 4.4.3.

In this section, the counting algorithm is used to implement the subscription index. Since

all the scenarios output similar results, we only display the outcome of a set of scenarios

characterized by (n = 50000, d = 3). Scenarios within that group have different frequencies of

unsubscribe operations. The value of p ranges from 0 to 0.4.

It is clear from Figure 4.3(a) that G1 consistently yields the shortest runtime. To interpret

the result, we break down the processing time into two parts: (1) the time spent on subscribe

and (2) the time spent on unsubscribe. For every k(k 6= 1), we measure the difference between

Gk and G1 in terms of the two variables and plot them in Figure 4.3(b) and 4.3(c). The

graphs show that the decreasing of item(2), as an effect of the increasing of k, is negligible

in comparison with the increasing of item(1). The increasing of the processing time is thus

attributed to the increasing of the subscribing time. Since the cost of adding a new subscription

increases strictly with k, the processing time can be minimized by choosing k = 1.

But we want to know why the increasing of k brings limited benefit to the unsubscribe

operation? At a first glance, it becomes harder to lose all the covering relations when some

subscription is removed, if we increase a node’s in-degree by using a larger k. In fact Fig-
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Figure 4.3: 50000 (un)subscribe operations. 3 attributes per subscription.
The difference is relative to k = 1

ure 4.3(d) does show that the amount of nodes being left uncovered reduces drastically when

k gets larger. The difference is measured by subtracting the corresponding amount induced

by G1. But it does not lead to the same level of reduction in the checking time as indicated

in Figure 4.3(e). The checking time is a quantity used to measure the overhead of checking

the covering status for every uncovered node during unsubscribe. It is realized by searching in

the subscription index to look for more covering subscriptions. Clearly this cost increases with

the value of k. Given the fact that every uncovered node was initially covered by k number

of existing subscriptions, it simply gets much harder to find k number of additional covering

subscriptions. Therefore the advantage brought by the reduction in the amount of uncovered

nodes was impaired.

Second, a node in Gk will be disconnected from all its neighbors during unsubscribe. Sec-

tion 4.4.2 shows that a larger k will increase both a node’s in-degree and out-degree, which is

reflected in Figure 4.3(f). The induced extra overhead further diminished the benefit gained

in the checking time, as you may compare the values shown in Figure 4.3(e) and Figure 4.3(c).

In summary, by increasing the value of k, we slightly benefit the unsubscribe operation,

yet severely penalize the subscribe operation. Since it turns out that the processing time is



www.manaraa.com

58

dominated by the overhead of handling subscribes, it is beneficial to keep k = 1 to minimize

the processing time.

4.5.4 Comparative study of covering data structures

In this section, we compare the performance of following covering data structures: the

2-layer framework, POSET-derived forest and Siena POSET. The purpose is to judge which

structure yields the shortest time in processing a sequence of mixed subscribe and unsubscribe

operations.
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Figure 4.4: 50000 (un)subscribe operations

We choose an input size of 50000 operations and vary the values of d(3 ≤ d ≤ 6) and

p(0 ≤ p ≤ 0.4) to measure the performance under different configurations. The results are

plotted in Figure 4.4. The labels “count” and “kdtree” represent two separate instances of the

2-layer framework. They use the same graph G1, but different subscription index.

The Siena POSET runs much slower than the other data structures under all the scenarios.

For instance, it spent approximately 560 seconds in the scenario specified by (n = 50000, d =

6, p = 0.4), while the time incurred by the other structures for the same scenario were less than

60 seconds as indicated in Figure 4.4(e). Because of the huge disparity, the POSET curves
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don’t fit easily into the graphs and are not drawn.

In Figure 4.4, the performance of the “counting” instance is close to that of POSET-derived

forest, when the number of attributes in each subscription is no greater than 4. It outperforms

POSET-derived forest if more attributes are introduced. In contrast, the results generated by

the K-d tree instance show overwhelming advantage over the other two structures under all the

scenarios. For example, in the scenario of (n = 50000, d = 6, p = 0.2), the overhead of K-d tree

is roughly 9% of counting and 5% of POSET-derived forest. In another scenario characterized

by (n = 50000, d = 6, p = 0.4), the cost of K-d tree is about 7% of POSET-derived forest and

17% of counting. The significant performance boost roots in the fact that K-d tree is more

efficient than the counting algorithm in detecting covering for numeric subscriptions.

The results also demonstrate the flexibility of our modular approach. If regular subscription

index is in use, we can improve the performance by using a simple graph G1. If the same

graph G1 is equipped with a sophisticated index, then the processing overhead can be further

reduced. Since the graph design and the building of subscription index are loosely-coupled in

our framework, if someone comes up with better graph design or builds more efficient index in

the future, we can easily integrate his contribution into our framework and make it a better

solution to address the problem of subscription covering. However it is unclear how to realize

the same type of adaptability in the monolithic POSET structures.
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Figure 4.5: 50000 (un)subscribe operations. Probability of unsubscribe is 0.4.
The difference is relative to the POSET-derived forest

We can break down the processing time illustrated in Figure 4.4 into, (1) time spent on

subscribe and (2) time spent on unsubscribe, to investigate why POSET-derived forest performs
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worse on most inputs. Figure 4.5 plots the results obtained from a set of scenarios characterized

by (n = 50000, p = 0.4). The graphs show the difference between POSET-derived forest and

the instances of the 2-layer framework in terms of the two variables.

The results indicate that POSET-derived forest runs slower in both subscribing and un-

subscribing. But the difference exhibited in the processing time is largely attributed to the

difference caused by the time of subscribe. Recollect the respective algorithms of adding a new

subscription, the G1 algorithm and POSET-derived forest share the common point that finding

a single covering subscription suffices. However POSET-derived forest requires the returned

subscription must be an immediate predecessor of the new subscription. It’s this extra con-

straint that makes the insertion into POSET-derived forest more expensive. It is unclear how

to find immediate predecessors quickly other than walking down the POSET-derived forest

and examine nodes one-by-one. In contrast, we can easily assign the task of covering detection

to a dedicated subscription index in the Gk algorithm and expedite the insertion process. The

results show that our new graph design is not only efficient but also sufficient.

4.6 Approximate covering detection

Although subscription index is shown to be useful in accelerating covering detection, it

remains a hard combinatorial problem. Its special case, the detection of covering for numeric

subscriptions, can be formulated as multidimensional point dominance problem, for which no

efficient worst-case solution exists.

On the other hand, we observe that in our publish-subscribe application, there is no need

to search for covering subscriptions exhaustively every time. Covering is just an optimization.

The system will continue to work correctly if covering relations go undetected. However, if

routers continue to forward subscriptions that are covered, the system could soon degrade in

performance. Thus, we have two extremes, neither of them very desirable – one is to ignore

covering completely and the other is to follow it exactly all the time. We propose a middle

ground, approximate covering detection. When a new subscription arrives, the set of existing

subscriptions at a router is partially searched for a covering subscription, and if none is found,
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then the new subscription is forwarded. We are able to precisely quantify the fraction of the

space of covering subscriptions that is to be searched. Our main result is that this middle

ground is quite attractive. It is possible to search most of the solution space consisting of

covering subscriptions at a fraction of the cost it takes to exhaustively search for covering

subscriptions.

In this section, we present one solution of approximate covering based on space filling

curves. This method can be applied to numeric subscriptions. The roadmap is as follows:

We first show the equivalency of covering detection to multidimensional point dominance in

Section 4.6.1. Next we survey the related work in Section 4.6.2. Space filling curves are

introduced in Section 4.6.3. In Section 4.6.4, we present some intuition as to why approximate

point dominance may be cheaper than exhaustive point dominance, and then derive the upper

bound on the cost of approximate point dominance. This is followed by an analysis of a

lower bound on the cost of exhaustive point dominance in Section 4.7. We finally sketch our

algorithm for approximate point dominance in Section 4.8.

4.6.1 Covering detection through point dominance

We consider a publish-subscribe system where each event has β numerical attributes, and

each subscription is a conjunction of range constraints, with one constraint per attribute. An

event can be treated as a point in β dimensional space, and a subscription can be modeled as

a β dimensional rectangle that matches all messages whose corresponding points lie inside the

rectangle.

Let S denote the set of subscriptions that have been registered at the router. Given a new

subscription s, the problem of finding whether or not it is covered by an existing subscription

in S is equivalent to the problem of finding an existing rectangle that encloses the incoming

rectangle. We apply the following well-known transformation (Edelsbrunner and Overmars[18])

to convert this into an equivalent point dominance problem in 2β-dimensional space.

A β-dimensional rectangle (subscription) s = ([`1, r1], [`2, r2], . . . , [`β, rβ]) is transformed

into a 2β-dimensional point p(s) = (−`1, r1,−`2, r2, . . . ,−`β, rβ). The following fact can be
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easily verified : For two β-dimensional subscriptions s1 and s2, s1 covers s2 iff every coordinate

of p(s1) is no less than the corresponding coordinate of p(s2). Note that the transformation

goes both ways. It is shown [18] that 2β-dimensional point dominance can be reduced to the

β-dimensional rectangle enclosure (or subscription covering) problem. Henceforth, we consider

the following point dominance formulation of subscription covering.

Problem 1 (Point Dominance) Index a set P of points in d dimensional space to answer

the following query efficiently. Given a d dimensional point x = (x1, x2, . . . , xd), report any

point in P that lies in the region ([x1,∞], [x2∞], . . . , [xd,∞]). If there are no points in the

region, then report “empty”.

Note that we use ∞ to denote the maximum value that can be taken by a coordinate along

a dimension. This maximum may be different for different dimensions. Our formulation of

approximate subscription covering is through the following relaxed version of point dominance,

called ε-approximate point dominance, for a user specified ε.

Problem 2 (ε-Approximate Point Dominance) Index a set P of points in d dimensional

space to answer the following query efficiently. Given a user defined parameter 0 < ε <

1, and one d dimensional query point x = (x1, x2, . . . , xd), search a subset of the region

([x1,∞], [x2,∞], . . . , [xd,∞]) whose volume is at least (1−ε) of the volume of the entire region.

If any point was found in the search, return it, and return “empty” otherwise.

For example, a 0.05-approximate point dominance query searches 95% of the volume of the

region that contains points corresponding to covering subscriptions. The only time when it

fails is the case when the query subscription is covered, but all covering subscriptions lie in the

remaining 5% of the region that has not been searched. If subscriptions are well distributed

over the universe, then an approximate point dominance search can be expected to find most

existing covering relations between subscriptions.

For a point dominance query, let bmax and bmin denote the number of bits required to

represent the longest and the shortest sides respectively, of the query rectangle. The aspect
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ratio α of the query rectangle is defined as α = bmax − bmin
1. Informally, the aspect ratio is

small (close to zero) when the sides of the query region are approximately the same length and

large when they are of significantly different lengths.

We consider indexes for approximate point dominance based on the Z space filling curve.

The Z curve has been used in a variety of indexing applications, including commercial data

products such as Oracle [38, 22]. Other popularly used SFCs are the Hilbert curve [25] and

the Gray code curve [20]. It has been observed [31] that the performance of the Z and Hilbert

curves for many indexing applications are within a constant fraction of each other.

Our Contributions We introduce the notion of approximate covering to optimize sub-

scription propagation in content-based publish-subscribe systems. Using the point dominance

formulation of subscription covering, we show the following. For point dominance queries where

the aspect ratio of the query region is small, approximate point dominance is much cheaper than

exhaustive point dominance. More precisely,

1. The worst case time complexity of an ε-approximate point dominance query in d dimen-

sions using the Z SFC is O
[
log d

ε ·
(
2α+1 d

ε

)d−1
]

2. In contrast, the worst case time complexity of an exhaustive point dominance query

using the Z SFC is Ω
[(

2α−1`
)d−1

]
where ` is the length of the shortest side of the query

rectangle.

3. We present a simple algorithm for approximate covering detection based on the Z space

filling curve.

Somewhat surprisingly, this shows that for a point dominance query with a small aspect

ratio, the complexity of an ε-approximate query is independent of the side lengths of the query

region, while the complexity of an exhaustive point dominance query increases as the (d−1)th

power of the smallest side length of the query region. This implies that an ε-approximate
1In two dimensional space, the aspect ratio of a rectangle is traditionally defined as the ratio of the longer

to the shorter side. Our definition of aspect ratio is approximately the logarithm (to base 2) of the traditional
definition. This definition leads to a convenient statement of our results.
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query (for a constant ε) is much cheaper than an exhaustive query. Further, we can expect

that the benefits of approximate covering over exhaustive covering will be more pronounced as

the query region gets larger. For query subscriptions with a small aspect ratio, approximate

covering can yield most of the benefits of exhaustive covering at a small fraction of the cost,

thus making a strong case for using approximate covering in optimizing content-based routing.

If however, the aspect ratio of the query rectangle was large, then the term 2α will domi-

nate the above expressions, and though approximate covering is still cheaper than exhaustive

covering, the benefits will not be as much as the case of small aspect ratio. An extreme case in

two dimensions is a M × 1 rectangle, which is not efficiently handled by most popular SFCs.

4.6.2 Related work on the detection of subscription covering

From a worst-case time complexity perspective, the current best solution to point-dominance

problem (see [44][Ch. 8], [63, 64]) over a set of n of points in d dimensions has a query time

of O(logd−1 n), insertion and deletion times of O(logd n). A serious limitation of this solution

is the space complexity, which is O(n logd n), making them impractical for use in a pub-sub

system. For example, with 104 subscriptions each with 4 attributes, the space requirement is

easily outside the capacity of the main memory.

Existing solutions to the problem of subscription covering [30, 61] do not provide any formal

analysis of the performance. In a recent work, Ouksel et.al.[39] consider a relaxed notion of

subscription covering and give a probabilistic algorithm for covering detection. The complexity

is O(nm), where n is the number of subscriptions and m is the number of attributes. To our

knowledge, ours is the first algorithm for exact or approximate covering with a time complexity

that is sublinear in the number of subscriptions being indexed.

Though there have been numerous applications of SFCs for indexing multidimensional

data and corresponding experimental analysis, there has been relatively little work on a formal

analysis of their performance. Moon et al.[31] present an analysis of the clustering properties of

the Hilbert SFC. They show that given a query region which is a high dimensional rectangle, the

average number of clusters of points inside the rectangle is proportional to the surface area of
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the query rectangle. Their analysis considers exhaustive search while we consider approximate

search. Tirthapura et. al.[60] show a formal analysis of space filling curves for parallel domain

decomposition.

4.6.3 Space filling curves

We consider a d-dimensional universe 2k× 2k · · ·× 2k. Note that the number of dimensions

d is twice the number of attributes in a subscription. Each element of this universe p =

(x1, x2, . . . , xd), where for all i = 1 . . . d, xi ∈ [0, 2k − 1], is called a cell. The SFC imposes a

linear order on all 2kd cells. Henceforth we use the term cube to refer to a cube in d dimensions

and rectangle to refer to a rectangle in d dimensions.

Most SFCs used for indexing including the Z curve [32] and the Hilbert curve [25], utilize

a recursive partitioning of the universe. The universe is first divided into 2d cubes, each of side

length 2k−1, by bisecting along every dimension. Each resulting cube is recursively divided

k − 1 times until we are left with unit cubes. We use the term standard cube to refer to each

intermediate cube resulting from this process. When the cube is recursively decomposed ` ≤ k

times, there are 2d` standard cubes each containing 2d(k−`) cells. Each such cube is referred to

as a standard cube at level `. Standard cubes at level k are the individual cells.

Lemma 2 Let C and D be two standard cubes which are not equal to each other. Then either

C contains D or D contains C or C and D are disjoint from each other.

Proof: The recursive partitioning of the universe can be visualized as a tree whose root is

the entire universe, and whose leaves are individual cells. Both C and D are nodes in this tree.

Since C 6= D, the following are the only possibilities (1)C is an ancestor of D, or (2)D is an

ancestor of C, or (3)C and D lie in different subtrees. In the first case, C contains D, in the

second case D contains C and in the third case C and D are disjoint from each other.

Each standard cube at level ` ≤ k is assigned a unique d` bit number called its key, which

defines its position in the total order. Different SFCs differ in the assignment of keys to different

standard cubes at the same level. The input points are sorted according to the keys of the cells
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Figure 4.6: For the same Sx × Sy rectangle, there are (a) 2 runs for the
Hilbert SFC and (b) 3 runs for the Z SFC

containing them, and stored in a one-dimensional data structure called the SFC array (note

that the SFC array could be implemented using any dynamic unidimensional data structure

such as a binary tree or a skip list).

A run is defined as a set of cells that are consecutively ordered by the SFC. For example,

in Figure 4.6, for the rectangular region, there are three runs in the Z curve, and two runs in

the Hilbert curve. All points belonging to a run appear as a contiguous segment in the SFC

array. Accessing a run in the SFC requires two binary searches on the keys corresponding to

the first and last cells in the run. Hence, an operation on a run, such as examining if a run

is empty or not, is very efficient, whether the run is small or large. Hence, the performance

of an SFC based query over a region depends on the minimum number of runs the region can

be decomposed into. The following fact is true for the Z SFC, and for all SFCs that use a

recursive partitioning of the universe. Informally, once an SFC enters a standard cube, it will

leave the standard cube only after visiting every cell inside it.

Fact 1 A standard d-cube is a single run.

4.6.4 Upper bound for approximate point dominance

In this section, we derive an upper bound for the cost of approximate point dominance

based on the Z SFC(Theorem 2). To launch a smooth progress, we first unveil the behind-

the-scene intuition. Next we define the fraction of the solution space consisting of covering
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subscriptions that is to be searched by approximate covering. Then we show a series of lemmas

that lead to the final upper bound.

Intuition The performance of the space filling curve on a point dominance query, whether

exhaustive or approximate, depends on how many runs the query region can be partitioned

into. Accessing different runs costs the same, but the volume covered by different runs can be

vastly different. As a result, the regions that are considered by the approximate and exhaustive

point dominance queries may differ only slightly in terms of volume, but widely in terms of

the number of runs required to cover them, and hence in the cost of processing.

For example, consider a universe indexed by the Z curve. Figure 4.7 shows two query

regions, each corresponding to a different point dominance query. The first query region is

a square of size 256 × 256, and the second query region is of size 257 × 257. For the first

query, there is a single run that exactly equals the query region, and the cost of answering this

query is very small. On the other hand, the number of runs required to exhaustively cover

the second query region is 385, since we are forced to cover the periphery of the region using

very short runs. In fact, it will be shown (Section 4.7) that the cost of exhaustively covering a

d-dimensional rectangle is proportional to the surface area (the perimeter, in two dimensions)

of the rectangle. However, for the second query region, one of the runs covers more than 99%

of the query region, while most of the other smaller runs individually cover only 0.015% of

the query region. If we only wanted a 0.01-approximate point dominance search, we would be

done if we only examined the largest run, and ignored the rest. Thus an approximate point

dominance search would be much faster than an exhaustive one for the second query.

Extremal rectangle The algorithm for approximate point dominance will select a sub-

space of the query region such that the volume of the subspace is at least (1 − ε) fraction of

the volume of the query region, but the number of runs required to cover it is much smaller.

We now describe the way in which this subspace is selected.

Given a point p = (x1, x2, . . . , xd), the exhaustive point dominance asks for any point in

the rectangle ([x1, 2k − 1], [x2, 2k − 1], . . . , [xd, 2k − 1]). We refer to such a rectangle as an
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Figure 4.7: Two example point dominance queries for the Z curve. Standard cubes belonging
to the same run are drawn using identical patterns

extremal rectangle, since one of its vertices is the point (2k − 1, 2k − 1, . . . , 2k − 1). Note that

an extremal rectangle can be completely specified through specifying its lengths along each

dimension, since one of its vertices is fixed. Let ` = (`1, `2, . . . , `d) be a vector where for each

i = 1, . . . , d, 1 ≤ `i ≤ 2k. We use R(`) to denote an extremal rectangle, whose side lengths

along dimensions 1, 2, . . . , d are `1, `2, . . . , `d respectively.

For a positive integer x, let b(x) denote the number of bits in the binary representation

of x, where the most significant bit is 1. For example, b(9) = 4. For positive integer x and

m < b(x), let t(x,m) denote the integer formed by retaining the m most significant bits in x

and setting the rest to zero. When the input is a vector, the operator t() will be applied to

each element in the vector. For example, t(`,m) = (t(`1,m), t(`2,m), · · · , t(`d,m)).

Given an initial query region R(`), the approximate point dominance query considers a

smaller extremal rectangle R(t(`, m)) that is completely contained within R(`). For ease of

notation, we use Rm(`) to represent R(t(`,m)). The parameter m is chosen as a function of

ε (the user desired coverage) such that the chosen rectangle covers at least (1− ε) fraction of

the volume of R(`).

We now formally develop the upper bound. Before outlining the proof, we first explain

some concepts.

Definition 5 For rectangle T , cubes(T ) is defined as the minimum number of standard cubes

into which T can be partitioned, and runs(T ) is defined as the minimum number of runs that

make up all cells of T in the SFC array.

Lemma 3 For any rectangle T , cubes(T ) ≥ runs(T ).
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Proof: Consider a partitioning of T into cubes(T ) standard cubes. From Fact 1 each standard

cube in such a partitioning corresponds to a single run. This immediately leads to a clustering

of all cells that make up T in the SFC array into cubes(T ) runs. Thus it must be true that

runs(T ) ≤ cubes(T ).

The worst-case cost of approximate point dominance is equal to runs(Rm(`)). According

to Lemma 3, this is bounded by cubes(Rm(`)). So our strategy for the proof goes as follows.

Lemma 5 shows that a greedy algorithm can partition an arbitrary region into a minimum

number of standard cubes. Lemma 6 classifies the obtained standard cubes so that we are able

to totalize cubes(Rm(`)) in Lemma 9. The final statement Theorem 2 can be easily extended

from Lemma 9. Note that the proofs are very general so that they remain valid for other SFC,

such as Hilbert curve, which is based on the recursive partitioning of the space.

As the first step, we decide what value of m produces the required space coverage. The

following lemma shows that if we truncated each side length of R(`) down to its log2
2d
ε most

significant bits, then the volume of the resulting rectangle is within (1 − ε) of the volume of

R(`). The proof is in the appendix.

Lemma 4 Let 0 < ε < 1. If m ≥ log2
2d
ε , then vol(Rm(`))

vol(R(`)) ≥ 1− ε

Proof: Let γ = vol(Rm(`))
vol(R(`)) .

γ =
i=d∏

i=1

t(`i,m)
`i

t(`i,m)
`i

≥ t(`i,m)
t(`i,m) + 2b(`i)−m

=
1

1 + 2b(`i)−m

t(`i,m)

≥ 1

1 + 2b(`i)−m

2b(`i)−1

=
1

1 + 1
2m−1

Since 1 + x ≤ ex for all real x,

t(`i,m)
`i

≥ e
−1

2m−1 = e
−2
2m

Thus,

γ ≥
i=d∏

i=1

e
−2
2m = e

−2d
2m ≥ 1− 2d

2m

Since m ≥ log2
2d
ε , we have 2d

2m ≤ ε, and thus γ ≥ 1− ε
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Next we consider the partitioning of a given extremal rectangle into standard cubes. It is

always trivially possible to partition any rectangle into a set of standard cubes by breaking it

up into individual cells (note that each cell is a standard cube). We now describe a greedy

algorithm that outputs the partition of any region (which is not necessarily a rectangle) into

a minimum number of standard cubes. Suppose it is required to partition a region R into

standard cubes. The greedy algorithm works as follows. If R is empty, then the algorithm

outputs nothing, and exits. Otherwise, the largest standard cube that fits within R, say C, is

chosen and output. The algorithm is then recursively applied on input R− C.

Lemma 5 The greedy algorithm, when applied to region R, produces an optimal partition of

R into a minimum number of standard cubes.

Proof: Proof by induction on vol(R), the number of cells in R. For the base case, where

vol(R) = 0, the algorithm is obviously correct. For the inductive case, assume that for every

region R such that vol(R) < κ, the greedy algorithm decomposes R into the minimum number

of standard cubes.

Consider a region R such that vol(R) = κ. Let C be the largest standard cube completely

contained within R. Let D denote a partition of R into the minimum number of standard

cubes. We use proof by contradiction to show that E must contain C as an element. Suppose

C 6∈ E. Let E′ ⊂ E represent the set of standard cubes within E that contain cells that

makeup C. Clearly E′ is non-empty. Since each element of E′ intersects C, and none of them

can equal C, it must be true from Lemma 2 that every element of E′ is fully contained within

C. This yields a decomposition of R into fewer number of standard cubes than E by replacing

E′ with a single cube C, contradicting the optimality of E. Thus E must contain C, and

the first step of the greedy algorithm is proved correct. The remaining region (R − C) has

fewer than κ cells, since C is non-empty. By the inductive hypothesis, the greedy algorithm

generates an optimal decomposition of (R− C), and the proof is complete.

Let D represent the set of standard cubes resulting from a decomposition of R(`) into

standard cubes based on the greedy algorithm. Let Di represent the subset of D consisting



www.manaraa.com

71

of standard cubes of side length 2i. For integer x, let xj denote the jth bit in the binary

representation of x. For integer x, let Si(x) =
∑j=b(x)−1

j=i xj2j , i.e. Si(x) is the result of

choosing only the most significant bits in the binary representation of x starting from xi

onwards. When the input is a vector, the operator Si() will be applied to each element in

the vector. Thus Si(`) = (Si(`1), Si(`2), · · · , Si(`d)). Let `i,j = `ij , i.e. the jth bit of `i. For

j = 1, . . . , d, indicator variable Oj is defined as follows. Oj = 0 if `ij = 0 for all i = 1, . . . , d;

Oj = 1 if `i,j = 1 for some i, 1 ≤ i ≤ d. Assume w.l.o.g. `1 ≤ `2 ≤ · · · ≤ `d. The following

lemma gives a precise characterization of the type and location of the standard cubes resulting

from an optimal partition of R(`).

Lemma 6 For b(`1) ≤ i ≤ b(`d)− 1, Di is empty. For 0 ≤ i ≤ b(`1)− 1

1. Di is non-empty if and only if Oi = 1.

2. The region occupied by ∪j=b(`1)−1
j=i Dj is the extremal rectangle R(Si(`)).

Proof: First we prove by contradiction that Di is empty for b(`1) ≤ i ≤ b(`d)− 1. Suppose

Dj is non-empty for some j, b(`1) ≤ j ≤ b(`d) − 1. Let Cj ∈ Dj be a standard cube of side

length 2j . The projection of Cj on the first dimension is a line segment of length 2j ≥ 2b(`1).

But `1 is at most 2b(`1) − 1 since it is a b(`1) bit number, leading to a contradiction. Thus Di

must be empty for b(`1) ≤ i ≤ b(`d)− 1.

For the rest of i, b(`1) − 1 ≥ i ≥ 0, we use proof by reverse induction on i, starting from

i = b(`1)− 1 and going down to i = 0.

We first consider the base case: i = b(`1)− 1. We have Ob(`1)−1 = 1, because `1,b(`1)−1 = 1.

Since Sb(`1)−1(`j) is non-zero and no more than `j for 1 ≤ j ≤ d, it must be true that the

extremal rectangle R(Sb(`1)−1(`)) is not empty and is fully contained inside R(`). Moreover,

Sb(`1)−1(`j) is divisible by 2b(`1)−1 for 1 ≤ j ≤ d. So R(Sb(`1)−1(`)) can be decomposed into the

union of standard cubes of side length 2b(`1)−1. We know from the above that Di is empty for

b(`d)− 1 ≥ i ≥ b(`1). This indicates that the largest standard cube which can fit into R(`) has

a side length of 2b(`1)−1. Such standard cubes will be chosen by the greedy algorithm if they

exist. Since R(Sb(`1)−1(`)) is not empty, we know Db(`1)−1 is also non-empty.
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Finally we claim there is no standard cube of side length 2b(`1)−1 in the region R(`) −
R(Sb(`1)−1(`)). We use proof by contradiction. Suppose the specified region contains one

standard cube C ∈ Db(`1)−1. Since two standard cubes cannot intersect each other (Lemma 2),

there can be no intersection between C and R(Sb(`1)−1(`)). Under this condition, there must

exist at least one dimension onto which the projections of C and R(Sb(`1)−1(`)) are disjoint.

Proof by contradiction. Suppose the projections of C and R(Sb(`1)−1(`)) overlap on every

dimension. Let [li, ri] denote the overlapping segment between the two projections along the

ith dimension. As a result, [l1, r1]× [l2, r2]× · · · × [ld, rd] forms a rectangle which is shared by

both rectangles, which contradicts the fact that they don’t intersect. Therefore the projections

of C and R(Sb(`1)−1(`)) must be disjoint along some dimension.

Assume w.l.o.g. that the projections of C and R(Sb(`1)−1(`)) are disjoint along dimension 1.

The combined lengths of their projections along dimension 1 is Sb(`1)−1(`1) + 2b(`1)−1 = 2b(`1).

However `1 can be no more than 2b(`1) − 1. We reached a contradiction. Therefore the region

R(`) − R(Sb(`1)−1(`)) can not contain C. As a consequence, the region occupied by Db(`1)−1

corresponds to the extremal rectangle R(Sb(`1)−1(`)). This proves the base case.

For the inductive case, assume that the theorem remains true for every i, b(`1) − 1 ≥ i ≥
κ + 1. We now consider the case i = κ. We study the following two cases.

Case I: Oκ = 0. We prove by contradiction that Dκ must be empty. Suppose Dκ is not

empty and Cκ ∈ Dκ be a standard cube of side length 2κ. The inductive hypothesis tells

us ∪j=b(`1)−1
j=κ+1 Dj forms an extremal rectangle R(Sκ+1(`)). We are able to show, by following

the analysis for the base case, the remaining region R(`) − R(Sκ+1(`)) can not contain Cκ.

This means Dκ must be empty. Since Dκ is empty, the inductive hypothesis can be directly

extended to show that standard cubes in D with a side length of 2κ or higher form an extremal

rectangle R(Sκ(`)).

Case II: Oκ = 1. We now consider the case Oκ = 1. Consider the extremal rectangles

R(Sκ(`)) and R(Sκ+1(`)). Since Sκ+1(`i) ≤ Sκ(`i) ≤ `i, it must be true that R(Sκ+1(`)) is fully

contained in R(Sκ(`)), which is in turn fully contained within R(`). Since Sκ(`i) is divisible

by 2κ for 1 ≤ i ≤ d, so R(Sκ(`)) can be decomposed into a union of standard cubes of side
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length 2κ. Similarly, it can also be shown that R(Sκ+1(`)) can be decomposed into a union

of standard cubes of side length 2κ. Since R(Sκ+1(`)) is fully contained within R(Sκ(`)), the

set of standard cubes in R(Sκ+1(`)) is a subset of the standard cubes in R(Sκ(`)). Thus the

region R(Sκ(`)) - R(Sκ+1(`)) can also be decomposed into multiple standard cubes of side

length 2κ. Furthermore because of Oκ = 1, we must have `i,κ = 1 for some i and in turn

Sκ(`i) − Sκ+1(`i) > 0. So the region R(Sκ(`)) - R(Sκ+1(`)) is not empty. We can follow an

analysis that is similar to the base case to show that the remaining region R(`) − R(Sκ(`))

does not contain any standard cube of side length 2κ. This completes the proof that Dκ is

non-empty and the union of standard cubes of side length 2κ or higher in D form the extremal

rectangle R(Sκ(`)).

Lemma 7 For every i = 0, . . . , b(`1) − 1, we have the following. If Oi = 0, then Ni = 0. If

Oi = 1, then

Ni =

∏j=d
j=1 Si(`j)−

∏j=d
j=1 Si+1(`j)

2id

Proof: From Lemma 6, we know that if Oi = 0, then Ni = 0. If Oi = 1, then all standard

cubes in Di lie in the region R(Si(`))−R(Si+1(`)). The expression for Ni can be derived through

dividing the difference in the volumes of the two rectangles by the volume of a standard cube

of side length 2i.

Lemma 8 cubes(Rm(`)) is maximized iff (1) `j,x = 1 for x ∈ [b(`j)−m, b(`j)−1] and j ∈ [1, d]

and (2) b(`j) = b(`d) for 1 < j < d.
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Proof: From Lemma 6, we have cubes(Rk(`)) =
∑i=b(`1)−1

i=b(`1)−k Ni. Using Lemma 7,

Ni =
1

(2i)d




j=d∏

j=1

Si(`j)−
j=d∏

j=1

Si+1(`j)




=
1

(2i)d




j=d∏

j=1

(Si+1(`j) + `j,i)−
j=d∏

j=1

Si+1(`j)




=
1

(2i)d




j=d∏
j=1
j 6=1

Si+1(`j) · `1,i + · · ·+
j=d∏
j=1

j 6=1,2

Si+1(`j) ·
j=2∏

j=1

`j,i + · · ·+ Si+1(`1) ·
j=d∏

j=2

`j,i + · · ·+ 1




It can be verified that each individual component in the above expression is maximized

when (1)`j,x = 1 for x ∈ [i, b(`j) − 1] and j ∈ [1, d] (2)b(`j) = b(`d) for 1 < j < d. Thus, Ni

is maximized under the same conditions. Since this is true for all i ranging from b(`1)− k till

b(`1)− 1, the lemma follows.

Recall that α = b(`d) − b(`1) is the aspect ratio of the rectangle, and 0 < ε < 1 is a user

parameter indicating the desired coverage of the approximate query.

Lemma 9 cubes(Rm(`)) < m · [2α(2m − 1)]d−1

Proof: We consider two cases: (1)k < α and (2)k ≥ α. To find an upper bound on

cubes(Rk(`)), we assume vector ` satisfies the conditions specified by Lemma 8.

Case 1: k < α.

According to Lemma 7, we have for i ∈ [b(`1)− k, b(`1)− 1],

Ni =
j=d∏

j=2

Si(`j)
2i

· Si(`1)
2i

−
j=d∏

j=2

Si+1(`j)
2i

· Si+1(`1)
2i

According to Lemma 8, we have `j,x = 1 for x ∈ [b(`d)− k, b(`d)− 1] and 1 < j ≤ d.

Since k < α, it must be true that b(`d)− k > b(`1) > i. This leads to Si(`j) = Sb(`d)−k(`d)

for 1 < j ≤ d.
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Ni =
(

Sb(`d)−k(`d)
2i

)d−1

·
(

Si(`1)
2i

− Si+1(`1)
2i

)
=




x=b(`d)−1∑

x=b(`d)−k

2x−i




d−1

=
(
2b(`d)−i − 2b(`d)−k−i

)d−1
=

[
2b(`d)−i ·

(
1− 1

2k

)]d−1

<

[
2α+k ·

(
1− 1

2k

)]d−1

<
[
2α(2k − 1)

]d−1

cubes(Rk(`)) =
i=b(`1)−1∑

i=b(`1)−k

Ni <

i=b(`1)−1∑

i=b(`1)−k

[
2α(2k − 1)

]d−1
= k ·

[
2α(2k − 1)

]d−1

Case 2: k ≥ α.

According to Lemma 7, we have for i ∈ [b(`1)− k, b(`1)− 1],

Ni =
j=d∏

j=2

Si(`j)
2i

· Si(`1)
2i

−
j=d∏

j=2

Si+1(`j)
2i

· Si+1(`1)
2i

We further split the derivation into two subcases.

Case 2.1 i ∈ [b(`d)− k, b(`1)− 1].

According to Lemma 8, we have `j,x = 1 for x ∈ [b(`d)− k, b(`d)− 1] and 1 < j ≤ d.

Since i ≥ b(`d)− k, we further get `j,x = 1 for x ∈ [i, b(`d)− 1] and 1 < j ≤ d. This leads

to Si(`j) = Si(`d) for 1 < j ≤ d.

Ni =
(

Si(`d)
2i

)d−1

· Si(`1)
2i

−
(

Si+1(`d)
2i

)d−1

· Si+1(`1)
2i

Note that
Si(`d)

2i
=

Si+1(`d)
2i

+ 1 ,
Si(`1)

2i
=

Si+1(`1)
2i

+ 1

We define X = Si(`d)
2i and Y = Si(`1)

2i .

X =
Si(`d)

2i
=

x=b(`d)−1∑

x=i

2x−i = 2b(`d)−i − 1
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Similarly Y = 2b(`1)−i − 1. We have X ≈ 2α · Y .

Ni = Xd−1 · Y − (X − 1)d−1 · (Y − 1)

= (Xd−1 − (X − 1)d−1) · Y + (X − 1)d−1

= [Xd−2 + Xd−3 · (X − 1) + · · ·+ (X − 1)d−2] · Y + (X − 1)d−1

= Xd−2 ·
[
1 +

X − 1
X

+ · · ·+
(

X − 1
X

)d−2
]
· Y + (X − 1)d−1

< Xd−2 · (d− 1) · Y + (X − 1)d−1

< Xd−2 · [Y (d− 1) + X]

If we assume 2α > (d− 1), we have [Y (d− 1) + X] < 2X.

Ni < 2 ·Xd−1 = 2 · (2b(`d)−i − 1)d−1 < 2 · (2k − 1)d−1

Case 2.2: i ∈ [b(`1)− k, b(`d)− k).

The derivation is similar to Case 1. We have Ni <
[
2α(2k − 1)

]d−1

By combining case 2.1 and case 2.2, we have

cubes(Rk(`)) <

i=b(`1)−1∑

i=b(`d)−k

2 · (2k − 1)d−1 +
i=b(`d)−k−1∑

i=b(`1)−k

[2α(2k − 1)]d−1

= 2(k − α) · (2k − 1)d−1 + α · [2α(2k − 1)]d−1

< (α · 2α(d−1) + 2k) · (2k − 1)d−1

< (k · 2α(d−1) + 2k) · (2k − 1)d−1

= k · (2α(d−1) + 2) · (2k − 1)d−1

≈ k ·
[
2α(2k − 1)

]d−1

Theorem 2 For any SFC that is based on a recursive partitioning of the universe (such as
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the Z curve and the Hilbert curve), the cost of an ε-approximate point dominance query is

O(log d
ε ·

(
2α+1 d

ε

)d−1
)

Proof: Using Lemma 9 and since runs(Rm(`)) ≤ cubes(Rm(`)) (Lemma 3), we have runs(Rm(`)) <

m · [2α(2m − 1)]d−1. From Lemma 4, if we choose m = log2
2d
ε we are guaranteed that Rm(`)

covers at least (1− ε) fraction of the volume of R(`). Thus the number of runs that have to be

accessed for an ε-approximate point-dominance query is no more than log2
2d
ε ·

[
2α

(
2d
ε − 1

)]d−1
,

which yields the desired upper bound.

4.7 Lower bound for exhaustive point dominance

In this section, we prove a lower bound on the worst-case cost of exhaustive point dominance

using Z-curve (Theorem 3). The worst-case cost is equal to runs(R(`)). However, estimating

the size of runs(R(`)) is much harder than estimating the size of cubes(R(`)), because there

is no simple characterization for runs like the “greedy” characterization for cubes.

Our strategy for proving a lower bound is as follows. We construct an extremal rectangle

R(`) such that for a large subset of the standard cubes resulting from a greedy (optimal)

partition of R(`), no two cubes in the subset can belong to the same run in the Z curve. Thus

runs(R(`)) is no less than the size of this subset.

Let γ be an integer in (0, k − α]. For a particular α, we consider the following extremal

rectangle R(`): (1) `d = 2γ − 1 and (2) b(`i) = γ + α for i ∈ [1, d). We examine a smaller

rectangle R0 contained inside R(`). R0 is constructed by selecting the least significant bit

from `d and the most significant bit from `i for i ∈ [1, d). Thus, the side length of R0 along

dimension d is 1, and the side length of R0 along all other dimensions is 2b(`1)−1. When the

greedy partition is applied, R0 is filled with standard cubes with a side length of 1, since its

shortest side has length 1.

The position of each standard cube can be specified by its coordinates. For example, square

“a” in Figure 4.10(c) has coordinates (010, 011). The Z-curve computes the key of a standard

cube by interleaving the bits representing its coordinates, starting from dimension 1, and then

proceeding to higher dimensions. For instance, the key of square “a” is (001101)2 = 13. Based
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dimension coordinates

1, · · · , (d− 1)

k︷ ︸︸ ︷
1 · · · 1 ∗ · · · ∗︸ ︷︷ ︸

b(`1)−1

d

k︷ ︸︸ ︷
1 · · · 1 0 · · · 01︸ ︷︷ ︸

b(`d)

Figure 4.8: Coordinates of a cell in R0. Symbol ∗ can be either 1 or 0. The size of the
universe along each dimension is 2k.

dz }| {
1 · · · 1 · · ·

dz }| {
1 · · · 1| {z }

k−b(`1)+1

dz }| {
× · · · × 1 · · ·

dz }| {
× · · · × 1| {z }

α−1

dz }| {
× · · · × 0 · · ·

dz }| {
× · · · × 0| {z }

b(`d)−1

dz }| {
× · · · × 1

Figure 4.9: Key of a cell in R0

on the way we construct R0, we claim that the coordinates of each standard cube in R0 exhibits

the pattern shown in Figure 4.8. It then follows that the key of a cube in R0 must satisfy

the pattern shown in Figure 4.7. Lemma 10 uses this derived pattern to prove that no two

standard cubes in R0 belong to the same run on the Z-curve.

Lemma 10 No two standard cubes in R0 belong to the same run on the Z space filling curve.

Proof: Every standard cube in rectangle R0 must be a cell, since one side of R0 has unit

length. Let S denote the keys of all cells in R0. We show that no pair of keys in S belong

to the same run in the Z SFC. Consider two keys s1, s2 ∈ S. Assume w.l.o.g. s1 > s2. Since

both s1 and s2 are odd numbers (from Figure 4.7), the difference between them is at least 2,

implying that they cannot be adjacent in the SFC.

Consider the cell c corresponding to the key s1 − 1. Cell c must be outside the query

rectangle R(`), for the following reason. The key of s1− 1 exhibits the same pattern as shown

in Figure 4.7, except that the least significant bit is 0. By unwinding this key to retrieve the

coordinates of the cell, we find that the dth dimension coordinate of c must be a k bit string

consisting of k − b(`d) ones followed by b(`d) zeros. The projection of rectangle R(`) along

dimension d is a line segment of length `d whose right endpoint is 2k − 1 (a bit string of k

ones) and left endpoint is 2k− 1− `d (a bit string of k− b(`d) ones followed by b(`d)− 1 zeroes
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followed by a one). Clearly, the dth dimension coordinate of c cannot lie in this range, and

hence c cannot belong to R(`).

We have shown that in the linear ordering produced by the Z SFC, between any two

standard cubes in R0, there must be a cell which does not belong to R(`). Since we are

interested in partitioning only the cells of R(`) into runs, without including any cell outside

R(`), no two standard cubes in R0 can belong to the same run for the Z SFC.

Theorem 3 For any integer 0 ≤ α < k, there exists an extremal rectangle R(`) whose aspect

ratio is α and the cost of an exhaustive search of R(`) using the Z space filling curve is

Ω
[(

2α−1 · `d

)d−1
]

Proof: The cost of an exhaustive search is lower bounded by runs(R0), since all cells in R0

have to be examined. From Lemma 10 we know runs(R0) = cubes(R0). Since each standard

cube in R0 is a cell, cubes(R0) = vol(R0)

vol(R0) =
j=d−1∏

j=1

2b(`j)−1 =

(
2b(`d) · 2α

2

)d−1

=
(

2α · `d

2

)d−1

4.8 Algorithm for approximate point dominance

In this section, we sketch an algorithm for approximate point dominance based on the Z

SFC. The only data structure to maintain is the SFC array, which sorts input points according

to their positions on the Z curve. It is easy to maintain this sorted order, while allowing

frequent additions and deletions of points, by using a dynamic ordered data structure such as

a balanced binary tree.

Given a point dominance query, our algorithm follows the greedy approach to partition the

query region into a minimum number of standard cubes. It then searches these cubes in the

SFC array for covering subscriptions, in the descending order of their volumes. Meanwhile it

keeps track of the ratio of the volume searched to the volume of the query region. The search

terminates when either a covering subscription is found or this ratio exceeds 1− ε.



www.manaraa.com

80

The major operation in the above algorithm is to compute the keys (defined in Section 4.6.3)

of the standard cubes produced by the greedy decomposition – these keys are required by the

search in the SFC array.

Let R(`) denote the extremal rectangle to be searched for a point dominance query, where

` = (`1, `2, . . . , `d). Recall that Di (defined in Section 4.6.4) is the set of all the standard cubes

resulting from the greedy decomposition, whose side length is 2i. It is sufficient to demonstrate

how to compute the keys of all standard cubes within a particular Di. We use the following

two-stage algorithm. In the first stage, we decompose the space occupied by Di into disjoint

rectangles with the following two properties: (1) The side length of the rectangle along every

dimension must be a multiple of 2i so that the entire rectangle is a union of standard cubes

in Di. (2) There exists at least one dimension along which the side length of the rectangle is

exactly 2i. In the second stage, we identify the standard cubes within each such rectangle and

compute their keys.

(a) (b) (c)

(d) (e)

(f)

Figure 4.10: Computation of the keys of standard cubes resulting from a greedy
decomposition. Symbol × can be either 1 or 0

Consider such a rectangle r in Dj that satisfies the above two properties. To decide r’s

side length on dimension j(j = 1 . . . d), we only need to consider the non-zero bits in `j ,

whose position in `j is at least i (the position of a bit b in a binary number is defined as the
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number of bits to the right of b in the binary number – note that the least significant bit is

at position 0). Let P = (P1, P2, . . . , Pd) be a vector defined as follows. For j = 1 . . . d, Pj

is the position of a non-zero bit in `j such that Pj ≥ i. It can be verified that each unique

instance of P corresponds to a different rectangle lying in the space occupied by Di, which

satisfies the properties listed in the previous paragraph. For example, all the 1 × 1 squares

in Figure 4.10(a) constitute the space occupied by D0. We can divide it into four rectangles

as shown in Figure 4.10(b). The corresponding instances of P are shown in Figures 4.10(d)

and 4.10(e).

Consider the rectangle represented by a vector P . The next step is to compute the keys of

standard cubes contained within P . We create another vector Q = (Q1, Q2, . . . , Qd) to store

the coordinates of a standard cube within P , where Qj is the coordinate of the standard cube

along dimension j. We know that standard cubes in Di result from (k− i) rounds of recursive

partitioning of the universe. Thus we can use (k − i) bits to represent Qj , for j = 1 . . . d. Let

Qj,y be the bit of Qj at position y. We can compute Qj from Pj and `j in the following way:

Qj,y−i = ¬`x,y, for y ∈ (Px, k − 1]

Qj,y−i = `x,y, for y = Px

Qj,y−i = either 0 or 1, for y ∈ [i, Px)

(4.5)

For example, the rectangle “2× 1” in Figure 4.10(b) consists of two standard squares “a”

and “b” as shown in Figure 4.10(c). We get the rectangle by selecting the first bit from `1 and

the rightmost bit from `2. Figure 4.10(f) shows how Equation (4.5) can be applied to compute

the coordinates of “a” and “b”. Once the coordinates of a cube are available, we can get its

key by interleaving the bits, and the standard squares can be searched in the SFC array.

Next we present the algorithm’s pseudocode. Due to the typesetting problem, we split

the algorithm into three pieces. Algorithm 4.3 is the main routine, which calls a recursive

function EnumRectangles. The pseudo code for this routine is listed in Algorithm 4.5. Inside

EnumRectangles, we call another recursive function CompKeys, whose pseudo code is presented

in Algorithm 4.4.
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Algorithm 4.3 Compute the keys of standard cubes in Di

1: create an empty vector P of size d

2: for j = 1 to d do
3: if `j,i == 1 then
4: EnumRectangles(P ,j,1)

Algorithm 4.4 CompKeys(vector P , vector Q, int t)
Synopsis: compute the keys of standard cubes contained inside the rectangle denoted by
P

1: use Equation 4.5 to compute Qt based on Pt and `t.
2: for every possible instance of Qt do
3: if t == d then
4: generate the key of a standard cube by interleaving the bits in Q

5: else
6: CompKeys(P ,Q,t + 1)
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Algorithm 4.5 EnumRectangles(vector P , int s, int t)
Synopsis: enumerate the rectangles within the space occupied by Di, whose side length along
dimension s is 2i

1: if t > s then
2: for j = b(`t)− 1 downto i do
3: if `t,j == 1 then
4: Pt = j

5: if t == d then
6: create an empty vector Q of size d

7: CompKeys(P ,Q,1)
8: else
9: EnumRectangles(P ,s,t + 1)

10: else if t < s then
11: for j = b(`t)− 1 downto i + 1 do
12: if `t,j == 1 then
13: Pt = j

14: if t == d then
15: create an empty vector Q of size d

16: CompKeys(P ,Q,1)
17: else
18: EnumRectangles(P ,s,t + 1)
19: else
20: Pt = i

21: if t == d then
22: create an empty vector Q of size d

23: CompKeys(P ,Q,1)
24: else
25: EnumRectangles(P ,s,t + 1)
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CHAPTER 5. Fault tolerant publish/subscribe

Like any other large-scale distributed computing system, faults are common in a pub-

lish/subscribe network. They can take different forms. For example, network links may go

down and destroy the network connectivity. Subscribers in each partition are then separated

from the rest of the network. They can no longer receive interested events published outside

the partition. It is also possible that a subscribe/unsubscribe message in transition could be

dropped and lead to the inconsistency among routing tables. The presence of incorrect rout-

ing information will misguide the event traffic. Consequently subscribers may receive events

they are not interested in or even worse lose interested events. Other transient faults include,

but not limited to, arbitrary sequences of process crashes and subsequent recoveries, arbitrary

perturbations of the memory etc.

In order to build a reliable publish/subscribe system, one approach is to enumerate all

possible faults that could occur and take actions to correct each of them. However due to

a wide variety of possible faults, implementing fault masking is at least expensive if not im-

possible. An alternative solution is self-stabilization, a notion developed by Dijkstra [17] in

1974. Informally a system is self-stabilizing, if starting from an arbitrary initial state (perhaps

faulty), it is guaranteed to reach a “legal” state in a finite number of steps. The advantage

of self-stabilization is that it addresses all faults through an uniform mechanism, rather than

enumerate all possible faults and propose separate corrections for each of them. It models a

system’s capability to recover from arbitrary transient faults without any intervention from

the external world.

In this chapter, we study how to apply self-stabilizing technique to maintain the consistency

of distributed routing tables in a publish/subscribe system and recover from faults in the
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network. In our approach, neighboring routers periodically exchange their routing table state,

and take corrective actions if (and only when) necessary. We formally prove that our algorithm

brings the system back to a legal global state if it starts out in a faulty state.

We further improve the efficiency of our self-stabilizing algorithm in two directions:

1. We show how to reduce the size of the stabilization messages by having the routers

exchange only “sketches” of routing tables which are much smaller than the routing

tables themselves. These sketches are based on Bloom filters, but we provide a new

accuracy/space tradeoff.

2. The self-stabilization procedure, though correct in all cases, may not lead to the most

efficient recovery from every fault. One such special case is a transient edge failure.

For this important special case, we optimize the self-stabilization so that the message

complexity for recovery is at most twice the cost of an “optimal” protocol to recover from

such a fault.

Our simulations suggest that both the above produce significant improvements in the effi-

ciency of the protocol.

5.1 Introduction

We propose a fault detection and recovery mechanism for distributed publish-subscribe

networks based on self-stabilization. Our algorithm targets the integrity of distributed routing

tables in a publish/subscribe system. Since routing information can arbitrarily be corrupted

by transient faults, the self-stabilizing algorithm must ensure that incorrect routing entries

are purged from the routing table and missing records are inserted into the routing table.

The basic idea for keeping routing tables consistent is to let neighboring routers periodically

exchange and compare their routing configurations.

The correctness of the publish-subscribe system is a global system property. No single node

in the system will be able to say whether or not the system is in a correct state. However, we

show that the predicate specifying a correct global state can be written as the conjunction of
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many local predicates, each of which can be checked in a decentralized way using local actions.

This property will help us in designing a local algorithm for the fault-tolerance. We prove

that our algorithm leads the system to a legal state, and the time taken is proportional to the

diameter of the network.

If implemented in a straightforward way, self-stabilization presents a large message over-

head. At first glance, it seems necessary for the nodes to pass their complete routing tables to

their neighbors. The routing tables are typically large (a few thousands of subscriptions), and

since this exchange has to take place periodically, this could lead to significant message traffic.

To reduce this overhead of checking, we propose to communicate small space “sketches” of

the routing tables, instead of the whole routing tables themselves. Our sketches are based

on Bloom Filters[6]. These can be used to detect inconsistencies between routing tables very

accurately, and yield space improvements of two orders of magnitude.

We formally analyze the space/accuracy tradeoff of checking using our sketches. Our

analysis of the false positive probability of using Bloom filters to check set equality is novel.

All previous analyses of Bloom filters focused on the false positive probability for checking the

set membership.

The self-stabilization algorithm, though correct in all cases, may not lead to the most effi-

cient recovery from every fault. One such special case is a transient edge failure. In face of an

edge failure, some subscriptions become obsolete, since they were generated by nodes in a par-

tition which is now unreachable. The stabilization algorithm will remove these subscriptions,

otherwise the endpoints of the broken edge will continue to receive useless events. But, if the

broken edge comes back up quickly, then these subscriptions become useful again. In such a

case, it is better to delay unsubscribing after a link failure.

Based on the above observation, the time to perform unsubscribing, after a link failure,

is critical to the system performance. Unfortunately there is no synchronization between the

time of link failure and the running of self-stabilization procedure, as the latter’s period is

determined by a preset timer. Consequently the next round of stabilization might kick in soon

after the link failure, which may not be ideal for the system performance.
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To minimize the reconfiguration overhead, we propose an adaptive strategy to reset the

timer of self-stabilization in the presence of link failure. The timeout value is no longer fixed,

but varies based on the amount of useless events received. We conduct a “competitive analysis”

to show that the incurred overhead under our adaptive strategy is no more than twice the

overhead of an optimal solution. Our simulation results reinforce the conclusion.

In summary, our contributions are as follows:

1. We present a local, self-stabilizing algorithm for adding fault-tolerance and recovery to

publish-subscribe systems. We prove that irrespective of what global state the system

begins in, it will reach a legal global state, and quantify the time (number of parallel

steps) taken to do so.

2. We present a way to reduce the overhead of fault-tolerance by communicating “sketches”

of the routing tables as opposed to the routing tables themselves. We analyze the space-

accuracy tradeoffs provided by these sketches.

3. We have simulated the self-stabilization algorithm, and these simulations reinforce our

theoretical analysis. We optimized the algorithm with respect to an important special

case, that of a transient edge failure, and this demonstrates how the choice of a timeout

for initializing the fault recovery can be very important for the overall performance.

5.2 Related work on reliable publish/subscribe systems

The closest match to our work is [36], in which Mühl et.al. also took the self-stabilizing

approach to recover a pub/sub system from transient faults. Their main idea is that routing

entries should be leased. Any entry which is not renewed before the expiration of its leasing

period will be purged from the system. One nice thing about this approach is that it allows a

publish/subscribe system to recover from both internal and external faults. For instance, if a

client crashes, his subscriptions are automatically deleted after the leases are expired.

However this benefit also comes at a great cost. In order to keep an entry alive, it is

necessary to renew it on time. To do that, “resubscribing” messages issued by clients are
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periodically propagated inside the system. Since we must renew every subscription, this incurs

significant message overhead as the amount of subscriptions registered in a system could be

huge.

In [4], the authors described a guaranteed delivery service for the Gryphon system. This

service depends on an acknowledgement-based scheme and requires stable storage at the event

publishing sites. This approach does not work in dynamic scenarios where routers may crash

and network links can go down.

In face of the topological changes, such as tree partitioning or grafting/pruning of the

branches, Siena [10] suggests the usage of system primitives, including subscribe/unsubscribe,

to allow subtrees to be merged or to be split. In [41], the authors argue that subscribing

and unsubscribing should be treated asymmetrically and propose an optimization over the

Siena approach. In another paper [15], they optimize the special case of a link failure and

a link formation occurring in parallel and push the reconfiguration overhead for this special

case to a minimum. In addition, epidemic algorithms [14] are also applied in unreliable and

highly dynamic scenarios to provide reliable information dissemination to a group of recipients.

Epidemic algorithms are lightweight, scalable and robust, but they provide guarantees only in

probabilistic terms.

The reliability of a pub/sub system can also be strengthened by building the system on top

of a robust overlay network. Some systems like Scribe[48] and Hermes [42] use distributed hash

tables, which take advantage of the peer-to-peer routing substrate to achieve fault-tolerance.

5.3 System model

We deal with a publish-subscribe network whose nodes are organized into a single spanning

tree. We assume that all communication links are FIFO. Each node holds a routing table.

Many data structures have been proposed for fast matching and forwarding of events[54, 24];

we will not be concerned with the exact form of this data structure. For our purposes, the

routing table is a set of tuples of the form (sub, R) where sub is a subscription, and R is a

set of neighboring nodes from which the subscription was received. If any event arrives that
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matches sub, then it is forwarded to all nodes in R, except for the node from which the event

arrived.

Self-stabilizing algorithms can be built in a modular fashion[23]. Our algorithm stabilizes

the state of the routing tables on a tree-based publish-subscribe system. This can be layered

on top of another algorithm which stabilizes the spanning tree itself.

5.4 Self-stabilizing algorithm

The self-stabilizing algorithm is concerned with the consistency between the routing tables

held by the nodes. Neighboring nodes periodically exchange the states of their routing tables.

A node takes corrective actions if its routing information is inconsistent with some neighbor.

Each node makes local corrections independently and asynchronously. Through a sequence of

local corrections, we restore the consistency among the distributed routing tables.

5.4.1 Local legality implies global legality

The definitions of legal local/global states lie at the core of our algorithm. Before defining

them, we first introduce some notations and concepts.

An undirected edge connecting nodes a and b is denoted by {a, b}. It is composed of two

directed edges, denoted by (a, b) and (b, a). For node v, let N(v) denote the neighbor set of v.

If we remove edge {a, b} from the tree T , the whole tree is divided into two parts. The subtree

rooted at a is denoted by T b
a and the subtree rooted at b is denoted by T a

b .

For directed edge (a, b), the filter Fa→b is the union of all subscriptions registered at node

a, which sends matching events to node b; in other words, it is the set of all subscriptions that

a has so far received from b. The set Sa
b is the union of all subscriptions that are generated by

nodes in the subtree T a
b .

Definition 6 A message transition can be one of the following:

(1)generation: A node produces a new (un)subscription.

(2)propagation: A (un)subscription is being transmitted over the link.

(3)consumption: The receiver processes an incoming (un)subscription.
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Definition 7 A system is quiescent if there are no subscribe/unsubscribe messages in transit.

Suppose the neighbor set of b, N(b) = {n1, n2, . . . nk, a}. Let Xb→a denote the subscriptions

in transit from b to a and Yb→a denote the unsubscriptions in transit from b to a. Let Lb denote

the local subscriptions issued by node b. We first define what it means for an edge to be locally

legal.

Definition 8 The directed edge (a, b) is locally legal, iff Fa→b∪Xb→a−Yb→a = ∪k
i=1Fb→ni∪Lb.

Definition 9 The undirected edge {a, b} is locally legal, iff both (a, b) and (b, a) are locally

legal.

We now define what it means for an edge to be globally legal. We assume that every

received subscription will be forwarded unless it is a duplicate.

Definition 10 If the system is quiescent, then edge {a, b} is globally legal, iff Fa→b = Sa
b and

Fb→a = Sb
a.

Definition 11 A publish-subscribe system is in a legal state if one of the two conditions holds:

(1)it is quiescent and all edges are globally legal or

(2)it can be reached from a legal quiescent state by a finite sequence of transitions.

The global legality of edges is hard to check directly, since it is a predicate that involves

the state of the whole system. However, the local legality of an edge can be (more) easily

checked. We now state a theorem which shows that the predicate defining the global legality

of the system can be written as the conjunction of many local predicates, one for each edge.

Theorem 4 The publish-subscribe system is legal iff every edge is locally legal.

Proof: A legal system can either be quiescent or have messages in transit.

(1) The system is quiescent

The Necessity: We want to prove that inside a legal system, every edge is locally legal.

Since this is a legal system, we know every edge inside is globally legal. For an arbitrary
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edge (a, b),that means Fa→b = Sa
b (Definition 10).Assume N(b) = {n1, n2, . . . nk, a}. We have

Sa
b = ∪k

i=1S
b
ni
∪Lb. We also have Fb→ni

= Sb
ni

(every edge is globally legal). By combining the

two, we get Fa→b = ∪k
i=1Fb→ni ∪ Lb. This concludes the proof that edge (a, b) is locally legal.

The Sufficiency: For an arbitrary edge (a, b), if it is locally legal,it satisfies Fa→b =

∪k
i=1Fb→ni ∪ Lb in a quiescent system. We need to show Fa→b = Sa

b (edge (a, b) is globally

legal). We prove this by induction on the height of the subtree T a
b .

Base Case: Height is equal to 1 and T a
b only contains b. We have the following equations:

∪k
i=1Fb→ni = φ,Lb = Sa

b . This fact infers Fa→b = Sa
b . We reach edge (a, b) is globally legal.

Inductive Hypothesis: Assume edge (a, b) is globally legal when the height of T a
b is no

greater than (k − 1).

Inductive Step: Height is k. The subtree T b
ni

has its height ≤ (k − 1). According to the

inductive hypothesis, edge (b, ni) is globally legal. This means Fb→ni = Sb
ni

. In turn we have

Fa→b = ∪k
i=1Fb→ni ∪ Lb = ∪k

i=1S
b
ni
∪ Lb = Sa

b

Again edge (a, b) is globally legal. Given the fact that every edge in the tree is globally legal,

we conclude that the global state is legal.

(2) The system has messages in transit

The Necessity: According to Definition 10, a legal system which is not quiescent is derived

from a quiescent one by a finite sequence of message transits. We examine the first transit in

that sequence. Suppose w.l.o.g the transit happens along edge (b, a). Before it happens, we

know edge (a, b) is locally legal (This is proved by part (1)). We have Fa→b = ∪k
i=1Fb→ni

∪Lb.

After this transit, the union of subscriptions registered at b becomes ∪k
i=1F

′
b→ni

∪ L
′
b. The

subscriptions held by a and b are different. But the message in transit captures the difference.

We have the following equation

Fa→b ∪Xb→a − Yb→a = ∪k
i=1F

′
b→ni

∪ L
′
b
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Edge (a,b) remains locally legal (Definition 8). Therefore a single message transit preserves the

local legality of each edge. Hence through a finite sequence of message transits, a non-quiescent

legal system still guarantees that each edge of the network is locally legal.

The Sufficiency: Let L be a system state where every edge is locally legal and network

links hold messages.We need to show that there exists some quiescent legal state Q and a finite

sequence of message transits seq that brings Q to L. We prove this by induction on the number

of messages which are in transit in L. We use k to denote the number.

Base Case: There’s no message in transit. We have k = 0. In part (1), we’ve proved that

in a quiescent system, the fact that every edge is locally legal ensures a legal system.Thus seq

is the null sequence. In the base case, Q=L.

Inductive Hypothesis: We assume that L can be reached from Q through seq as long as the

number of messages in transit in L is no greater than (k − 1) and every edge is locally legal.

Inductive Step: We define L to be a system state where every edge is locally legal and the

number of messages in transit is k. We define L’ to be another system state where every edge

is locally legal and the number of messages in transit is no greater than (k− 1). According to

the inductive hypothesis, we know that L’ is a legal system. In the remaining part, we want

to prove that L can be reached from L’ by a sequence of message transits seq’.

We choose an arbitrary message which is in transit along edge (u, v). We reverse the

progress by letting u withdraw the message and cancel the local modification. If each edge

incident on u is locally legal, this action won’t disturb its local legality. If node u is the source

of the message,u will remove the message from all incident edges. Since the degree of u is no

less than one, the number of messages inside the system decreases at least by one. We conclude

L can be reached from L’.

On the other hand, if the message was received from some neighbor nj by u, u will withdraw

the message from other incident edges but return it back to nj along edge (u, nj). This action

still maintains the local legality of each edge. If the degree of u is greater than two, the number

of messages in transit decreases at least by one. L can be reached from L’. Otherwise we repeat

the same action at node nj . It is clear that such a recursive process will terminate after a finite
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steps of moves. The worst case is that the tree topology is a chain, in which the recursive

reversal will end up at the exact source of the message. Furthermore such a reversal decreases

the number of messages in transit at least by one. Once again L can be reached from L’.

In summary, we conclude L can be reached from L’ by a finite step of message transits seq’.

L’ itself can be reached from a quiescent legal state Q by a finite step of message transits seq.

By following seq and seq’ in order, we can bring Q to L. This completes the proof.

5.4.2 The edge stabilization algorithm

Given the above theorem, we only need to stabilize each directed edge into a legal state,

and the system will reach a globally legal state. It is easy to set a (faulty) directed edge to a

legal local state using appropriate subscriptions/unsubscriptions. However, stabilizing a faulty

edge might “disturb” a neighboring edge, and cause it to move from a legal to an illegal state,

so that the global state is still illegal. Informally speaking, such “disturbances” can flow only

along a simple path in the tree, and have to eventually stop at a leaf. Thus, eventually the

system will reach a globally legal state.

A timer is assigned to each directed edge in the network, and the (directed) edge stabi-

lization procedure is initiated upon expiry of the timer. The period of the timer controls the

frequency of stabilization, and hence the message overhead (more discussion of the timer ap-

pears in Section 5.6). The source node of a directed edge is responsible for the stabilization. A

single round of the procedure consists of two phases: an observe phase followed by a correction

phase. We describe the algorithm for directed edge (a, b). All the directed edges are being

stabilized in parallel in this manner. Table 5.1 summarizes the appearing variables.

N(a) {n1, n2, . . . , nk, b}
S(a) ∪k

i=1Fa→ni ∪ La

C1 S(a)− Fb→a

C2 Fb→a − S(a)

Table 5.1: List of variables
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Algorithm 5.1 Actions at node a

Event: timeout at t1 (observe phase)

1: compute S(a) at time t1
2: send an “observer” to b

3: reset the timer for the next round
Event: get the reply from b (correction phase)
// b’s reply is Fb→a

1: if S(a) 6= Fb→a then
2: compute C1, C2

3: send C1, C2 to b

It is important to note that the correction phase at node b is initiated only if edge (a, b),

and hence the whole system was not in a legal state. Thus, if the system is in a legal state, then

the self-stabilization will not add any additional subscriptions/unsubscriptions to the system.

Algorithm 5.2 Actions at node b

Event: receive an “observer” from a (observe phase)
1: compute Fb→a

2: return Fb→a to a

Event: get the reply from a (correction phase)
// a’s reply are C1 and C2

1: subscribe to each record contained in C1

2: unsubscribe to each record contained in C2

Theorem 5 If every directed edge in the tree executes the above stabilization process, then the

system will reach a legal global state irrespective of which state it starts in.

Proof: We first verify that the above procedure can set edge (a, b) to a locally legal state.

According to the algorithm, S(a) was computed just before node a sent out the observer.

Since the network edges are FIFO, Fb→a was a cumulative result at b after processing all the

messages sent by a before receiving the observer. If edge (a, b) was locally legal, we must have

Fb→a = S(a) (Definition 8). Otherwise a informed b of the difference by sending C1 and C2.

It is clear that edge (a, b) can be restored to a locally legal state in this manner.

However the correction of edge (a, b) might disturb other edges emanating from b and cause

them to move from a legal state to an illegal one, so that the global state is still illegal. If
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there is any such, node b will stabilize it. But the correction of an outgoing edge at b will

not re-disturb edge (a, b), as the local legality of edge (a, b) is totally determined by incoming

edges (except (b, a)) at a. As a result, such a ripple effect can only propagate in one direction,

starting from the root of the subtree T a
b and going down towards the leaves. Since the tree

has a finite diameter, this procedure must terminate in the end. Till then every edge is locally

legal. Based on Theorem 4, we know the entire system reaches a global legal state.

As to the time taken till the system reaches a legal state, it is no more than d parallel time

steps, where d is the diameter of the tree, and a parallel time step is the time required for an

edge stabilization procedure (observe+correct phases) at all edges in parallel.

5.5 Reducing the message overhead

An important component of the local stabilization algorithm is the checking of the equality

between the two tables Sb
a and Fb→a. One way to do this is to send the entire table Fb→a

across from node b to node a, but this would result in a large message overhead for the

following reasons:

1. The objects being sent across and compared are large sets of subscriptions. These routing

tables might contain thousands of subscriptions, and if each subscription takes a few tens

of bytes, then these messages would be of the order of a few hundred kilobytes or more.

In addition, comparing these large sets would be significant computational overhead.

2. Self-stabilization is a periodic system behavior, which further exacerbates the above

problem.

Our approach to reducing this overhead is as follows. Instead of sending the entire routing

tables across, we send only a sketch of the table to the neighboring node. This sketch takes

much smaller space than the table itself.If the sketches don’t match, then the two sets are clearly

unequal. If they do match, then the sets are equal with high probability. In other words,there is

some probability that the routing tables are actually inconsistent, but the sketches do not reveal
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it. If the probability of false negative is low, this approach leads to a significant improvement

in the efficiency.

We summarize the desirable properties of a sketch:

1. The size of the sketch should be small compared to the original routing table size

2. It should be able to detect inconsistencies with high probability, and with low computa-

tional overhead

3. The cost of maintenance should be low, i.e. every time a subscription or unsubscription

is received, we should be able to update the sketch quickly.

4. Since we need to compute the union of routing tables while checking, we need to be able

to (quickly) compute the sketch of the union of sets given the sketches of the sets.

We suggest using the Bloom Filter as the sketch of each set.There are many advantages

associated with bloom filter. First of all, it is a compact data structure. Suppose a routing

table contains 1000 subscriptions. As an example, let’s assume the average size per entry is

50 bytes. Then the set size is 5 × 104 bytes. In comparison if a bloom filter allocates 4 bits

to represent an entry, then we have m/n = 4(bits/entry). We will show later that this ratio

guarantees a low error rate. The filter size is only 4 × 103 bytes,which is a tenfold saving in

storage.

To support dynamic sets, we use a variant of bloom filter, called “counting bloom filter”. In

counting bloom filter, each bit is associated with a small counter. When an item is inserted, the

corresponding counters are incremented; when an item is deleted, the corresponding counters

are decremented. We reset a bit to 0 if the associated counter decreases down to 0. The

counters are maintained locally. We only exchange and compare the filters. The updating

requires O(1) time.

Since each bloom filter is a bit vector of the same size, it is straightforward to union separate

filters, maintained for each F , to get S. Furthermore for every new (un)subscription, we only

need to update a single filter. And the updating complexity is constant time.
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The last merit is related to the low error rate. At the core of bloom filter design, there

is a clear tradeoff among the bloom filter size(m), the number of hash functions used(k) and

the probability of a false positive (p). Below we analyze the various tradeoffs associated with

using a Bloom filter for the purpose of testing equality between sets.

5.5.1 Bloom filter for testing set membership

A Bloom filter is a method for representing a set A = {a1, a2, . . . , an} of n elements to

support membership queries. It was invented by Burton Bloom[6] in 1970. The construction

of Bloom filter is as follows. First allocate a vector v of m bits, initially all set to 0. Choose

k independent hash functions,h1, h2, . . . , hk, each with range {1, . . . , m}. For each element

a ∈ A, the bits at positions h1(a), h2(a), . . . , hk(a) in v are set to 1. A particular bit might

be set to 1 multiple times. Given a query that asks if b ∈ A, we check the bits at positions

h1(b), h2(b), . . . , hk(b). If any of them is 0, then certainly b 6∈ A. Otherwise we reply that b ∈ A

even though there exists a small probability that this isn’t the case. This probability is termed

as “false positive” probability for a membership query. The parameters k and m should be

chosen such that the rate of a false positive is acceptable. We refer to [6] for further details.

As described in [21], there exists a tradeoff between m, k and perr, the probability of a false

positive for a membership query. Observe that after inserting n keys into a filter of size m, the

probability that a particular bit is still 0 is exactly

p0 =
(

1− 1
m

)kn

≈ e−
kn
m (5.1)

Hence the probability of a false positive in this situation is

perr =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k
(5.2)

5.5.2 Bloom filter for testing set equality

In self-stabilization, we do not use a Bloom filter to test for set membership, but to compare

if two sets are equal. More precisely, we want to check if the union of a few sets (Sb
a =
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∪k
i=1Fa→ni ∪ La) equals another set (Fb→a). This calls for a new analysis of the tradeoffs

between the false positives and the parameters of the Bloom filter. We now sketch our analysis

of the false positive probability for the context of set equality, and graph the resulting tradeoffs

obtained.

Let BS denote the Bloom filter of set S. Let m denote the size (in bits) of the Bloom filter,

and k the number of hash functions. We want to compute the probability that BA and BB

are equal, though A and B are unequal. Let p denote the false positive probability. We have

the following theorem about p.

Theorem 6

p = (1− p1 − p2)m

where

p1 = e−
k·|B|

m · [1− e−
k·|A−B|

m ]

and

p2 = e−
k·|A|

m · [1− e−
k·|B−A|

m ]

Proof: If BA 6= BB, it means that some bits in BA which are set to 1 remain 0 in BB or the

other way round. For an arbitrary bit in the bloom filter, we use E1 to represent the event

that the bit is 1 in BA yet remains 0 in BB and use E2 to denote the event that the bit is 1 in

BB yet remains 0 in BA. Let p1 and p2 stand for their probability respectively.

p1 = Pr[(the bit is 1 in BA) ∩ (the bit is 0 in BB)]

= Pr[(the bit is 1 in BA)|(the bit is 0 in BB)] · Pr[the bit is 0 in BB]
(5.3)

As we know, after inserting n keys into a bloom filter of size m, the probability that a particular

bit remains 0 is exactly

p0 =
(

1− 1
m

)kn

≈ e−
kn
m

∴ Pr[the bit is 0 in BB] = e−
k·|B|

m

Given the condition that the bit remains 0 in BB, if it becomes 1 in BA, it can only be set by
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some element belonging to (A−B).

∴ Pr[(the bit is 1 in BA)|(the bit is 0 in BB)] = 1− e−
k·|A−B|

m

∴ p1 = e−
k·|B|

m · [1− e−
k·|A−B|

m ]

Due to the symmetry, we have

p2 = e−
k·|A|

m · [1− e−
k·|B−A|

m ]

Now the fact of BA = BB indicates that none of the bits in the bloom filter can satisfy either

E1 or E2. By taking the complement, we have

p = (1− p1 − p2)m
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Figure 5.1: The probability of false positive under various m/n and k combinations. The
y-axis is the error probability in a log-scale. The x-axis is the size of the difference |A−B|.

We now sketch the value of p with respect to various values of k,m/n. For simplicity, we

only consider the case where (A − B) 6= ∅ but BA ⊆ BB. It is important to note that this

probability(pA) is a loose upper bound of p, whose value will be even smaller. In Figure 5.1,

the probability decreases (leading to a more accurate test for equality) when the difference

between the sets is large. As k increases, the computation overhead for maintaining the Bloom

filter increases. The parameter m/n is the number of bits used per element: as it increases,
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the space overhead also increases, but the false positive probability decreases. Thus, by using

4 bits per element and 2 hash functions, the false positive rate for sets differing by 3 elements

is only about 0.001, and this can be further decreased by increasing k or m/n.

5.6 Optimization of transient edge failure

The self-stabilization algorithm, though correct in all cases, may not lead to the most effi-

cient recovery from every fault. One such special case is a transient edge failure. Transient edge

failure and the accompanied reconfiguration are common issues in publish-subscribe systems.

In the literature, [41, 15] have specifically studied this problem.

When a link is removed, each of its endpoints is no longer able to route matching events to

the other partition. Hence the stabilization procedure will remove the obsolete subscriptions

inside each partition. But if the link comes back up quickly, these removed subscriptions will

be re-added. It is better to delay unsubscribing in such a case.

However it is always possible that the edge never re-forms. If we delay unsubscribing, the

endpoints will keep receiving useless events due to the presence of obsolete subscriptions. This

also exacerbates the system performance.

Based on the above observation, the time to perform unsubscribing, after a link failure,

is critical to the system performance. Unfortunately there is no synchronization between the

time of link failure and the running of self-stabilization procedure, as the latter’s period is

determined by a preset timer. Consequently the next round of stabilization might kick in soon

after the link failure, which may not be ideal for the system performance.

In this section, we propose an adaptive algorithm to reset the timer of the self-stabilization

procedure after a link failure. The timeout value is no longer fixed, but varies based on

the amount of useless events received. We derive a “competitive analysis” to prove that the

incurred overhead under our adaptive strategy is no more than twice the overhead of an optimal

solution. Our simulation results reinforce the conclusion.
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5.6.1 The adaptive algorithm

In order to quantify the incurred overhead under an edge failure, we first give a definition

of the message cost inside the system. Here a message can be an event, a subscription or an

unsubscription.

Definition 12 The cost of a single message is measured as the total number of hops traversed

by that message inside the system.

As we have seen, an edge failure/restoration induces two types of costs: the cost of

unsubscribing/re-subscribing and the cost of useless events.

In terms of the first cost, we consider the extreme where each subscription inside the system

is only shared by one subscriber. Under this condition, any reconfiguration message generated

by an endpoint of the broken edge will propagate throughout the entire subtree rooted at itself.

This gives us a coarse estimation of the cost, which is upper bounded by the size of the subtree.

With respect to the second cost, it depends on the system load and the duration of link

failure. If the load is high (a high event publishing rate) and the duration is long, two endpoints

of the broken edge will receive more useless events. The cost becomes significant, otherwise it

is moderate.

The total reconfiguration overhead under an edge failure is a summation of the two costs.

According to our analysis, one of them is bounded and the other is boundless. Furthermore

the two costs are correlated, as unsubscribing can suppress the growth of the cost of useless

events. In order to minimize the total overhead, we have to make a decision about when to

unsubscribe (when to invoke the next round of stabilization). An optimal decision is based

on the total amount of useless events that will be generated, which is not apriori. Thus we

propose an approximate online algorithm called the adaptive algorithm.

Algorithm description According to Section 5.3, we assume the application interacts

with some underlying topology maintenance algorithm. That algorithm notifies the application

about the event of link failure. The application then cancels the scheduling of the next round

of stabilization. Meanwhile each endpoint of the broken edge initializes a threshold to monitor
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the cost of useless events received. The threshold is set to be the size of the subtree rooted

at the endpoint. The next round of stabilization is invoked either the cost of useless events

exceeds the threshold or the link re-forms, whichever happens first.

We have the following theorem w.r.t the overhead of the adaptive algorithm.

Theorem 7 Under the adaptive strategy, the resulting cost is never more than twice the cost

of the optimal solution.

Proof: Let T be the size of the spanning tree, E be the cost generated by useless events and

δ be the duration of the link failure. We use γ to denote the ratio of the cost of the adaptive

strategy and the cost of the optimal solution. If within the time of δ, we have E ≤ T . Under

the adaptive strategy, the cost is equal to E. The cost of the optimal solution is also E. We get

γ = 1. If within the period of δ, we have E > T . Under the adaptive strategy, the cost becomes

E + 2T (δ 6= ∞). The optimal cost is almost 2T (δ 6= ∞). We have 1.5 < γ < 2
(

E
2T > 0.5

)
. If

δ = ∞, which indicates that the link goes down permanently, the optimal solution produces a

cost of T . The cost of the adaptive strategy amounts to E + T . We have γ ≈ 2 (E ≈ T ).

We introduced the framework of the algorithm. But two questions remain unresolved:

(1)How to identify useless events and keep track of the corresponding cost? (2)How to estimate

the size of the subtree in a distributed manner?

To keep track of the number of hops traversed by an useless event,say e, we add a counter

to e. The counter is initialized to zero at the source of the event. As e goes through each hop,

the receiver node will either increment the counter by one or reset it to zero. If the receiver

has in its routing table two or more subscriptions matching e, this indicates e is a useful event

and we reset the counter to zero. Otherwise e is potentially an useless event and we increment

the counter by one. When e finally reaches an endpoint,if that node can’t find any subscriber

to receive e, it decides that e is an useless event. The endpoint updates the cost of unwanted

events received by adding the value of the counter.

As to the computation of the size of the subtree rooted at each node, we can start from

the leaves and calculate the subtree size recursively in a bottom-up fashion. This is the



www.manaraa.com

103

implementation of a centralized algorithm and the transformation to a distributed version is

straightforward.

5.6.2 Simulation

We simulated our algorithm using the discrete event simulator OMNET++[37]. The re-

configuration overhead is chosen to be our performance metric. We studied the following three

strategies under a single link failure:

1. The “strawman algorithm”. We borrowed the name from [41]. It resets the timer upon

a link failure. It also invokes the stabilization without delay.

2. The “static algorithm”. It does not change the preset timer. The stabilization runs at

regular intervals.

3. Our “adaptive algorithm”. It resets the timer upon a link failure. The stabilization is

re-invoked either after a sufficient number of useless events are received or when the link

re-forms, whichever happens first.

Configuration In our simulations, both an event and a subscription are chosen to be

3-character random strings, where each character can be any of the 26 lowercase letters and 26

capital letters. An event matches a subscription if the two strings are identical. For example,

an event can be “Ace”, a subscription can be “ace”, but they don’t match. The topology is a

single spanning tree, consisting of 100 nodes.

Each scenario is uniquely identified by a combination of the following parameters:

• Publish Rate: The publish rate regulates the system load. A high rate indicates a heavy

load, while a low rate corresponds to a light load. We simulate two scenarios: a light

system load using a publish interval of 5.0 seconds and a heavy system load using a

publish interval of 0.1 seconds.

• Subscribe Rate: The subscribe rate controls the density of the subscriptions. A high

density indicates a big extent to which a subscription is shared by many subscribers. In
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turn it means a shorter path for an (un)subscription to propagate. This reduces the cost

of unsubscribing/re-subscribing. In reality, a subscription unlikely has a big degree of

sharing. Thus we set the subscribe interval to be 2.0 seconds. In addition, each router

can subscribe to at most 20 event patterns.

• Fixed Timer : Only the “static” algorithm sticks to the fixed timer and invokes the

stabilization at regular intervals. We choose two timeout values: a longer one of 10

seconds and a shorter one to be 3 seconds.

For each run, we plot the overhead against the duration of link failure under different

strategies.

Result analysis Under a heavy load(Figure 5.2), the endpoints expect to receive more

useless events. It’s ideal to unsubscribe early to limit the increasing cost of useless events.

In Figure 5.2, the strawman curve has the lowest overhead, as it unsubscribes without delay.

The adaptive curve has a slight increase, for it delays unsubscribing a little bit. The static

algorithm has a poor performance, but a shorter timeout brings down the overhead by 50%.
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Figure 5.2: Reconfiguration overhead under heavy system load

Under a light load(Figure 5.3), the cost of unwanted events is negligible due to the rare

occurrences of unwanted events. It is better to delay unsubscribing. Therefore any static

algorithm with large timeout performs well under this condition. Meanwhile the adaptive

algorithm also yields the same amount of cost. This observation is proved in Theorem 7.

This time both the strawman and the static strategy with short timeout value generate huge
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overhead. As a comparison, our adaptive algorithm saves two thirds of the cost of the strawman

approach.
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Figure 5.3: Reconfiguration overhead under light system load

In summary, neither the static nor the strawman does well for both the lightly loaded and

heavily loaded cases. However, the adaptive algorithm for triggering the reconfiguration shows

a good (though not optimal) performance in both cases.
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CHAPTER 6. Conclusion

Publish/subscribe is a generic paradigm for event dissemination, where events generated

by publishers are delivered to subscribers, who express their interests in certain types of events

via subscriptions. The strength of the publish/subscribe model lies in the anonymity between

publishers and subscribers, which makes it well suited for building modern loosely coupled

distributed applications. Among different variants of publish/subscribe, content-based pub-

lish/subscribe is especially expressive, since subscriptions consist of user defined predicates on

the complete content of an event. A content-based system is usually constructed as a dis-

tributed network of routers, so that it can scale with the number of users, and avoid a single

point of failure.

However, the flexibility of content-based systems currently comes at a significant cost.

Event forwarding is a complex task, since each forwarding decision is now based on the con-

tent of an event, rather than on a fixed destination address, as in IP routing, or on a fixed

group name, as in traditional multicast. Meanwhile in order to receive events published at

remote sites, it is necessary for each router to propagate locally registered subscriptions. But

disseminating subscriptions in the network can also be expensive both space-wise and time-

wise. Furthermore since it is built as a distributed network of multiple routers, the system

needs to be tolerant of various faults such as link failure, message loss and data corruption.

In this thesis, we develop techniques for building a scalable and reliable distributed content-

based publish/subscribe system. Our contributions are as follows.

First, we expedite distributed event forwarding through a strategy called “lookup reuse”

which replaces a large fraction of expensive content-match with much cheaper hash-table

lookups. This is made possible by letting routers share and reuse computed matching re-
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sults. In contrast, current event routing strategy performs content-match independently from

router to router. Simulations show that lookup reuse decreases the event processing overhead

on average by 40%.

Next, we exploit an optimization called subscription covering to decrease the number of

subscriptions forwarded in the system. To efficiently manage subscription covering, we build

a two-layer framework decoupling the detection of covering from its maintenance. Simulations

show that our modular structure is faster than previously known solution, which combines the

two functions into a single data structure.

We also propose a new concept called approximate covering that provably obtains much of

the benefits of exact covering at a fraction of its cost. A concrete solution based on Z space

filling curve is presented. Our approach is novel and valuable, as covering detection is shown

to be a hard problem. Its special case can be formulated as the problem of multidimensional

point dominance, for which no worst-case efficient solution is known.

Further, we design a scalable fault-tolerance scheme to fortify content-based systems through

self-stabilization, where a corrupted component of the distributed system can automatically re-

vert to a “correct” state through local corrections. This scheme has the advantage of addressing

all the faults through a uniform mechanism.
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